Explain how a solution of two volatile components with strong solute-solvent attractions deviates from Raoult's law.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Explain how a solution of two volatile components with strong solute-solvent attractions deviates from Raoult's law.

 

Explain how a solution of two volatile components with strong solute-solvent attractions deviates from Raoult's law.
Strong solute-solvent interactions lower the number of particles that have enough energy to remain in the solution as compared to either pure component, therefore increasing the vapor pressure.
Strong solute-solvent interactions increase the number of particles that have enough energy to escape the solution as compared to either pure component, therefore increasing the vapor pressure.
Strong solute-solvent interactions increase the number of particles that have enough energy to remain in the solution as compared to either pure component, therefore lowering the vapor pressure.
Strong solute-solvent interactions lower the number of particles that have enough energy to escape the solution as compared to pure component, therefore lowering the vapor pressure.
Transcribed Image Text:Explain how a solution of two volatile components with strong solute-solvent attractions deviates from Raoult's law. Strong solute-solvent interactions lower the number of particles that have enough energy to remain in the solution as compared to either pure component, therefore increasing the vapor pressure. Strong solute-solvent interactions increase the number of particles that have enough energy to escape the solution as compared to either pure component, therefore increasing the vapor pressure. Strong solute-solvent interactions increase the number of particles that have enough energy to remain in the solution as compared to either pure component, therefore lowering the vapor pressure. Strong solute-solvent interactions lower the number of particles that have enough energy to escape the solution as compared to pure component, therefore lowering the vapor pressure.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Solutions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY