Experiment # 1 2 3 Initial Final Horizontal Horizontal Speed (m/s) Speed (m/s) Initial Vertical Speed (m/s) Final Vertical Speed (m/s) Maximum Height of Travel (m)

icon
Related questions
Question

How would I solve the empty chart just for experiment #1 using the experiment 1 data from the chart below and the formulas from the last picture? 

### Projectile Motion Experiment

In this experiment, you will use the given equations to complete a table involving the following variables:

1. Initial Horizontal Velocity
2. Final Horizontal Velocity
3. Initial Vertical Velocity
4. Final Vertical Velocity
5. Maximum Height of Travel

### Experimental Data:

| Experiment # | Initial Horizontal Speed (m/s) | Final Horizontal Speed (m/s) | Initial Vertical Speed (m/s) | Final Vertical Speed (m/s) | Maximum Height of Travel (m) |
| ------------ | ------------------------------ | ---------------------------- | ---------------------------- | -------------------------- | ---------------------------- |
| 1            |                                |                              |                              |                            |                              |
| 2            |                                |                              |                              |                            |                              |
| 3            |                                |                              |                              |                            |                              |
| 4            |                                |                              |                              |                            |                              |

Please calculate each parameter for each experiment using the provided data and the appropriate physics equations. Assume no air resistance impacts the results.

### Calculations:

The data below provides the necessary information to complete the table above.

| Experiment # | Release Height (m) (Initial Height) | Time in air (s) (from release to landing) | Horizontal Distance Traveled (m) |
| ------------ | ----------------------------------- | ---------------------------------------- | -------------------------------- |
| 1            | 1.68 m                              | 0.80 s                                   | 2.9 m                            |
| 2            | 1.75 m                              | 0.92 s                                   | 3.3 m                            |
| 3            | 1.61 m                              | 0.91 s                                   | 3.45 m                           |
| 4            | 1.51 m                              | 0.75 s                                   | 2.7 m                            |

### Equations to Use:

1. **Horizontal Velocity**:
   \[
   v_{x} = \frac{d}{t}
   \]
   where \(d\) is the horizontal distance traveled and \(t\) is the time in the air.

2. **Vertical Velocity at Initial and Final Points**:
   \[
   v_{y, \text{initial}} = \sqrt{2gh}
   \]
   \[
   v_{y, \text{final}} = g \cdot t
   \]
   where \(h\) is the release height and \(g\
Transcribed Image Text:### Projectile Motion Experiment In this experiment, you will use the given equations to complete a table involving the following variables: 1. Initial Horizontal Velocity 2. Final Horizontal Velocity 3. Initial Vertical Velocity 4. Final Vertical Velocity 5. Maximum Height of Travel ### Experimental Data: | Experiment # | Initial Horizontal Speed (m/s) | Final Horizontal Speed (m/s) | Initial Vertical Speed (m/s) | Final Vertical Speed (m/s) | Maximum Height of Travel (m) | | ------------ | ------------------------------ | ---------------------------- | ---------------------------- | -------------------------- | ---------------------------- | | 1 | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | Please calculate each parameter for each experiment using the provided data and the appropriate physics equations. Assume no air resistance impacts the results. ### Calculations: The data below provides the necessary information to complete the table above. | Experiment # | Release Height (m) (Initial Height) | Time in air (s) (from release to landing) | Horizontal Distance Traveled (m) | | ------------ | ----------------------------------- | ---------------------------------------- | -------------------------------- | | 1 | 1.68 m | 0.80 s | 2.9 m | | 2 | 1.75 m | 0.92 s | 3.3 m | | 3 | 1.61 m | 0.91 s | 3.45 m | | 4 | 1.51 m | 0.75 s | 2.7 m | ### Equations to Use: 1. **Horizontal Velocity**: \[ v_{x} = \frac{d}{t} \] where \(d\) is the horizontal distance traveled and \(t\) is the time in the air. 2. **Vertical Velocity at Initial and Final Points**: \[ v_{y, \text{initial}} = \sqrt{2gh} \] \[ v_{y, \text{final}} = g \cdot t \] where \(h\) is the release height and \(g\
### Kinematic Equations for Projectile Motion

#### Explanation and Diagram for Understanding Projectile Motion

1. **Horizontal Motion Equation:**
   \[
   \vec{V}_{i,x} = \vec{V}_{f,x} = \frac{\Delta \vec{X}}{\Delta t}
   \]

2. **Vertical Position Equation:**
   \[
   y_f = y_i + \vec{V}_{i,y} \Delta t + \frac{1}{2} a_y (\Delta t)^2
   \]
   Find \( \vec{V}_{i,y} \)?

3. **Vertical Velocity Equation:**
   \[
   \vec{V}_{f,y} = \vec{V}_{i,y} + a_y \Delta t
   \]
   Find \( \vec{V}_{f,y} \)?

4. **Vertical Motion Equation:**
   \[
   (\vec{V}_{f,y})^2 = (\vec{V}_{i,y})^2 + 2 a_y \Delta y
   \]

Let’s determine \( \Delta y \):

\[
\Delta y = y_f - y_i
\]

Knowing the relation:
\[
\Delta y = y_{\text{max}} - y_i
\]

### Diagram Description

The diagram to the right illustrates a projectile motion scenario. It depicts a stick figure releasing a projectile at an angle. The vertical and horizontal displacements (\( \Delta y \) and \( \Delta x_{\text{total}}\)) are noted. The initial vertical position \( y_i \) and the time interval \( \Delta t_{\text{total}} \) are also given.

Key points:

- \( \Delta \vec{X}_{\text{total}} \) denotes the total horizontal displacement.
- \( \Delta \vec{t}_{\text{total}} \) denotes the total time interval.
- \( y_i \) is the initial vertical position.
- \( y_f \) represents the final vertical position at different points in the projectile’s path.
- The maximum vertical height achieved by the projectile is noted as \( y_{\text{max}} \).

By understanding these equations and the diagram, students can analyze and solve various projectile motion problems in physics.
Transcribed Image Text:### Kinematic Equations for Projectile Motion #### Explanation and Diagram for Understanding Projectile Motion 1. **Horizontal Motion Equation:** \[ \vec{V}_{i,x} = \vec{V}_{f,x} = \frac{\Delta \vec{X}}{\Delta t} \] 2. **Vertical Position Equation:** \[ y_f = y_i + \vec{V}_{i,y} \Delta t + \frac{1}{2} a_y (\Delta t)^2 \] Find \( \vec{V}_{i,y} \)? 3. **Vertical Velocity Equation:** \[ \vec{V}_{f,y} = \vec{V}_{i,y} + a_y \Delta t \] Find \( \vec{V}_{f,y} \)? 4. **Vertical Motion Equation:** \[ (\vec{V}_{f,y})^2 = (\vec{V}_{i,y})^2 + 2 a_y \Delta y \] Let’s determine \( \Delta y \): \[ \Delta y = y_f - y_i \] Knowing the relation: \[ \Delta y = y_{\text{max}} - y_i \] ### Diagram Description The diagram to the right illustrates a projectile motion scenario. It depicts a stick figure releasing a projectile at an angle. The vertical and horizontal displacements (\( \Delta y \) and \( \Delta x_{\text{total}}\)) are noted. The initial vertical position \( y_i \) and the time interval \( \Delta t_{\text{total}} \) are also given. Key points: - \( \Delta \vec{X}_{\text{total}} \) denotes the total horizontal displacement. - \( \Delta \vec{t}_{\text{total}} \) denotes the total time interval. - \( y_i \) is the initial vertical position. - \( y_f \) represents the final vertical position at different points in the projectile’s path. - The maximum vertical height achieved by the projectile is noted as \( y_{\text{max}} \). By understanding these equations and the diagram, students can analyze and solve various projectile motion problems in physics.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer