Experiment # 1 2 3 Initial Final Horizontal Horizontal Speed (m/s) Speed (m/s) Initial Vertical Speed (m/s) Final Vertical Speed (m/s) Maximum Height of Travel (m)
Experiment # 1 2 3 Initial Final Horizontal Horizontal Speed (m/s) Speed (m/s) Initial Vertical Speed (m/s) Final Vertical Speed (m/s) Maximum Height of Travel (m)
Related questions
Question
How would I solve the empty chart just for experiment #1 using the experiment 1 data from the chart below and the formulas from the last picture?
![### Projectile Motion Experiment
In this experiment, you will use the given equations to complete a table involving the following variables:
1. Initial Horizontal Velocity
2. Final Horizontal Velocity
3. Initial Vertical Velocity
4. Final Vertical Velocity
5. Maximum Height of Travel
### Experimental Data:
| Experiment # | Initial Horizontal Speed (m/s) | Final Horizontal Speed (m/s) | Initial Vertical Speed (m/s) | Final Vertical Speed (m/s) | Maximum Height of Travel (m) |
| ------------ | ------------------------------ | ---------------------------- | ---------------------------- | -------------------------- | ---------------------------- |
| 1 | | | | | |
| 2 | | | | | |
| 3 | | | | | |
| 4 | | | | | |
Please calculate each parameter for each experiment using the provided data and the appropriate physics equations. Assume no air resistance impacts the results.
### Calculations:
The data below provides the necessary information to complete the table above.
| Experiment # | Release Height (m) (Initial Height) | Time in air (s) (from release to landing) | Horizontal Distance Traveled (m) |
| ------------ | ----------------------------------- | ---------------------------------------- | -------------------------------- |
| 1 | 1.68 m | 0.80 s | 2.9 m |
| 2 | 1.75 m | 0.92 s | 3.3 m |
| 3 | 1.61 m | 0.91 s | 3.45 m |
| 4 | 1.51 m | 0.75 s | 2.7 m |
### Equations to Use:
1. **Horizontal Velocity**:
\[
v_{x} = \frac{d}{t}
\]
where \(d\) is the horizontal distance traveled and \(t\) is the time in the air.
2. **Vertical Velocity at Initial and Final Points**:
\[
v_{y, \text{initial}} = \sqrt{2gh}
\]
\[
v_{y, \text{final}} = g \cdot t
\]
where \(h\) is the release height and \(g\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd65840b3-a048-414f-8ddb-af48c17f45b8%2Fe2a48813-b3c3-443d-ab72-67f236d839aa%2F0pjmfy_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Projectile Motion Experiment
In this experiment, you will use the given equations to complete a table involving the following variables:
1. Initial Horizontal Velocity
2. Final Horizontal Velocity
3. Initial Vertical Velocity
4. Final Vertical Velocity
5. Maximum Height of Travel
### Experimental Data:
| Experiment # | Initial Horizontal Speed (m/s) | Final Horizontal Speed (m/s) | Initial Vertical Speed (m/s) | Final Vertical Speed (m/s) | Maximum Height of Travel (m) |
| ------------ | ------------------------------ | ---------------------------- | ---------------------------- | -------------------------- | ---------------------------- |
| 1 | | | | | |
| 2 | | | | | |
| 3 | | | | | |
| 4 | | | | | |
Please calculate each parameter for each experiment using the provided data and the appropriate physics equations. Assume no air resistance impacts the results.
### Calculations:
The data below provides the necessary information to complete the table above.
| Experiment # | Release Height (m) (Initial Height) | Time in air (s) (from release to landing) | Horizontal Distance Traveled (m) |
| ------------ | ----------------------------------- | ---------------------------------------- | -------------------------------- |
| 1 | 1.68 m | 0.80 s | 2.9 m |
| 2 | 1.75 m | 0.92 s | 3.3 m |
| 3 | 1.61 m | 0.91 s | 3.45 m |
| 4 | 1.51 m | 0.75 s | 2.7 m |
### Equations to Use:
1. **Horizontal Velocity**:
\[
v_{x} = \frac{d}{t}
\]
where \(d\) is the horizontal distance traveled and \(t\) is the time in the air.
2. **Vertical Velocity at Initial and Final Points**:
\[
v_{y, \text{initial}} = \sqrt{2gh}
\]
\[
v_{y, \text{final}} = g \cdot t
\]
where \(h\) is the release height and \(g\
![### Kinematic Equations for Projectile Motion
#### Explanation and Diagram for Understanding Projectile Motion
1. **Horizontal Motion Equation:**
\[
\vec{V}_{i,x} = \vec{V}_{f,x} = \frac{\Delta \vec{X}}{\Delta t}
\]
2. **Vertical Position Equation:**
\[
y_f = y_i + \vec{V}_{i,y} \Delta t + \frac{1}{2} a_y (\Delta t)^2
\]
Find \( \vec{V}_{i,y} \)?
3. **Vertical Velocity Equation:**
\[
\vec{V}_{f,y} = \vec{V}_{i,y} + a_y \Delta t
\]
Find \( \vec{V}_{f,y} \)?
4. **Vertical Motion Equation:**
\[
(\vec{V}_{f,y})^2 = (\vec{V}_{i,y})^2 + 2 a_y \Delta y
\]
Let’s determine \( \Delta y \):
\[
\Delta y = y_f - y_i
\]
Knowing the relation:
\[
\Delta y = y_{\text{max}} - y_i
\]
### Diagram Description
The diagram to the right illustrates a projectile motion scenario. It depicts a stick figure releasing a projectile at an angle. The vertical and horizontal displacements (\( \Delta y \) and \( \Delta x_{\text{total}}\)) are noted. The initial vertical position \( y_i \) and the time interval \( \Delta t_{\text{total}} \) are also given.
Key points:
- \( \Delta \vec{X}_{\text{total}} \) denotes the total horizontal displacement.
- \( \Delta \vec{t}_{\text{total}} \) denotes the total time interval.
- \( y_i \) is the initial vertical position.
- \( y_f \) represents the final vertical position at different points in the projectile’s path.
- The maximum vertical height achieved by the projectile is noted as \( y_{\text{max}} \).
By understanding these equations and the diagram, students can analyze and solve various projectile motion problems in physics.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd65840b3-a048-414f-8ddb-af48c17f45b8%2Fe2a48813-b3c3-443d-ab72-67f236d839aa%2F45yhaos_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Kinematic Equations for Projectile Motion
#### Explanation and Diagram for Understanding Projectile Motion
1. **Horizontal Motion Equation:**
\[
\vec{V}_{i,x} = \vec{V}_{f,x} = \frac{\Delta \vec{X}}{\Delta t}
\]
2. **Vertical Position Equation:**
\[
y_f = y_i + \vec{V}_{i,y} \Delta t + \frac{1}{2} a_y (\Delta t)^2
\]
Find \( \vec{V}_{i,y} \)?
3. **Vertical Velocity Equation:**
\[
\vec{V}_{f,y} = \vec{V}_{i,y} + a_y \Delta t
\]
Find \( \vec{V}_{f,y} \)?
4. **Vertical Motion Equation:**
\[
(\vec{V}_{f,y})^2 = (\vec{V}_{i,y})^2 + 2 a_y \Delta y
\]
Let’s determine \( \Delta y \):
\[
\Delta y = y_f - y_i
\]
Knowing the relation:
\[
\Delta y = y_{\text{max}} - y_i
\]
### Diagram Description
The diagram to the right illustrates a projectile motion scenario. It depicts a stick figure releasing a projectile at an angle. The vertical and horizontal displacements (\( \Delta y \) and \( \Delta x_{\text{total}}\)) are noted. The initial vertical position \( y_i \) and the time interval \( \Delta t_{\text{total}} \) are also given.
Key points:
- \( \Delta \vec{X}_{\text{total}} \) denotes the total horizontal displacement.
- \( \Delta \vec{t}_{\text{total}} \) denotes the total time interval.
- \( y_i \) is the initial vertical position.
- \( y_f \) represents the final vertical position at different points in the projectile’s path.
- The maximum vertical height achieved by the projectile is noted as \( y_{\text{max}} \).
By understanding these equations and the diagram, students can analyze and solve various projectile motion problems in physics.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
