Exercises 1-12: (a) Verify that the given function, yp(t), is a particular solution of the differential equa- tion. (b) Determine the complementary solution, yc(t). (c) Form the general solution and impose the initial conditions to obtain the unique solution of the initial value problem. 1. у" — 2у' — Зу %3D — 9t — 3, у(0) %3D 1, у'(0) %3D 3, Ур() %3D 3t — 1 2. y" – 2y' – 3y = e", y(0) = 1, y (0) = 0, yp(t) = -e2" /3 3. y" – y - 2y = 20e“, y(0) = 0, y'(0) = 1, yp(t) = 2e %3D %3D 4. y" – y – 2y = 10, y(-1) = 0, y'(-1) = 1, yp(t) =-5 5. y" + y = 2t, y(1) = 1, y'(1) = -2, yp(t) = t 6. y" + y = 2e-, y(0) = 2, y'(0) = 2, 2t yp(t) = -2te- %3D 7. y" + y = 2t – 3 cos 2t, y(0) = 0, y'(0) = 0, yp(t) = 2t + cos 2t 8. y" + 4y = 10e-, y(7)= 2, y'(T) = 0, yp(t) = 2e- 9. y" – 2y' + 2y = 10r², y(0) = 0, y (0) = 0, yp(t) = 5(t + 1)? 10. y" – 2y' + 2y = 5 sint, y(7/2) = 1, y (7/2) = 0, yp(t) = 2 cost + sint 11. y" – 2y' + y = e', y(0) = -2, y'(0) = 2, yp(t) = ře' 12. y" – 2y' + y = t² +4 + 2 sint, y(0) = 1, y (0) = 3, yp(t) = t² + 4t + 10 + cost
Exercises 1-12: (a) Verify that the given function, yp(t), is a particular solution of the differential equa- tion. (b) Determine the complementary solution, yc(t). (c) Form the general solution and impose the initial conditions to obtain the unique solution of the initial value problem. 1. у" — 2у' — Зу %3D — 9t — 3, у(0) %3D 1, у'(0) %3D 3, Ур() %3D 3t — 1 2. y" – 2y' – 3y = e", y(0) = 1, y (0) = 0, yp(t) = -e2" /3 3. y" – y - 2y = 20e“, y(0) = 0, y'(0) = 1, yp(t) = 2e %3D %3D 4. y" – y – 2y = 10, y(-1) = 0, y'(-1) = 1, yp(t) =-5 5. y" + y = 2t, y(1) = 1, y'(1) = -2, yp(t) = t 6. y" + y = 2e-, y(0) = 2, y'(0) = 2, 2t yp(t) = -2te- %3D 7. y" + y = 2t – 3 cos 2t, y(0) = 0, y'(0) = 0, yp(t) = 2t + cos 2t 8. y" + 4y = 10e-, y(7)= 2, y'(T) = 0, yp(t) = 2e- 9. y" – 2y' + 2y = 10r², y(0) = 0, y (0) = 0, yp(t) = 5(t + 1)? 10. y" – 2y' + 2y = 5 sint, y(7/2) = 1, y (7/2) = 0, yp(t) = 2 cost + sint 11. y" – 2y' + y = e', y(0) = -2, y'(0) = 2, yp(t) = ře' 12. y" – 2y' + y = t² +4 + 2 sint, y(0) = 1, y (0) = 3, yp(t) = t² + 4t + 10 + cost
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please do #1
section 3.7
![Exercises 1-12:
(a) Verify that the given function, yp(t), is a particular solution of the differential equa-
tion.
(b) Determine the complementary solution, yc(t).
(c) Form the general solution and impose the initial conditions to obtain the unique
solution of the initial value problem.
1. у" — 2у' — Зу %3D — 9t — 3, у(0) %3D 1, у'(0) %3D 3, Ур() %3D 3t — 1
2. y" – 2y' – 3y = e", y(0) = 1, y (0) = 0, yp(t) = -e2" /3
3. y" – y - 2y = 20e“, y(0) = 0, y'(0) = 1, yp(t) = 2e
%3D
%3D
4. y" – y – 2y = 10, y(-1) = 0, y'(-1) = 1, yp(t) =-5
5. y" + y = 2t, y(1) = 1, y'(1) = -2, yp(t) = t
6. y" + y = 2e-, y(0) = 2, y'(0) = 2,
2t
yp(t) = -2te-
%3D
7. y" + y = 2t – 3 cos 2t, y(0) = 0, y'(0) = 0, yp(t) = 2t + cos 2t
8. y" + 4y = 10e-, y(7)= 2, y'(T) = 0, yp(t) = 2e-
9. y" – 2y' + 2y = 10r², y(0) = 0, y (0) = 0, yp(t) = 5(t + 1)?
10. y" – 2y' + 2y = 5 sint, y(7/2) = 1, y (7/2) = 0, yp(t) = 2 cost + sint
11. y" – 2y' + y = e', y(0) = -2, y'(0) = 2, yp(t) = ře'
12. y" – 2y' + y = t² +4 + 2 sint, y(0) = 1, y (0) = 3, yp(t) = t² + 4t + 10 + cost](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3afa98d3-5d5f-4802-bbdd-7e6af6547327%2Ff8b83f5b-c7e1-45d9-a876-14484a66721d%2Fc6ldde9_processed.png&w=3840&q=75)
Transcribed Image Text:Exercises 1-12:
(a) Verify that the given function, yp(t), is a particular solution of the differential equa-
tion.
(b) Determine the complementary solution, yc(t).
(c) Form the general solution and impose the initial conditions to obtain the unique
solution of the initial value problem.
1. у" — 2у' — Зу %3D — 9t — 3, у(0) %3D 1, у'(0) %3D 3, Ур() %3D 3t — 1
2. y" – 2y' – 3y = e", y(0) = 1, y (0) = 0, yp(t) = -e2" /3
3. y" – y - 2y = 20e“, y(0) = 0, y'(0) = 1, yp(t) = 2e
%3D
%3D
4. y" – y – 2y = 10, y(-1) = 0, y'(-1) = 1, yp(t) =-5
5. y" + y = 2t, y(1) = 1, y'(1) = -2, yp(t) = t
6. y" + y = 2e-, y(0) = 2, y'(0) = 2,
2t
yp(t) = -2te-
%3D
7. y" + y = 2t – 3 cos 2t, y(0) = 0, y'(0) = 0, yp(t) = 2t + cos 2t
8. y" + 4y = 10e-, y(7)= 2, y'(T) = 0, yp(t) = 2e-
9. y" – 2y' + 2y = 10r², y(0) = 0, y (0) = 0, yp(t) = 5(t + 1)?
10. y" – 2y' + 2y = 5 sint, y(7/2) = 1, y (7/2) = 0, yp(t) = 2 cost + sint
11. y" – 2y' + y = e', y(0) = -2, y'(0) = 2, yp(t) = ře'
12. y" – 2y' + y = t² +4 + 2 sint, y(0) = 1, y (0) = 3, yp(t) = t² + 4t + 10 + cost
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)