A teacher has 24 colored pencils and 18 pictures to be placed in groups with the same number of pencils in each group and the same number of pictures in each group. If each group must have the same type of items, how many groups of pencils and how many groups of pictures can be made? How many of each item will be in
Permutations and Combinations
If there are 5 dishes, they can be relished in any order at a time. In permutation, it should be in a particular order. In combination, the order does not matter. Take 3 letters a, b, and c. The possible ways of pairing any two letters are ab, bc, ac, ba, cb and ca. It is in a particular order. So, this can be called the permutation of a, b, and c. But if the order does not matter then ab is the same as ba. Similarly, bc is the same as cb and ac is the same as ca. Here the list has ab, bc, and ac alone. This can be called the combination of a, b, and c.
Counting Theory
The fundamental counting principle is a rule that is used to count the total number of possible outcomes in a given situation.
![### Section: 5-1
**Page #**
- **Book:** 169
- **Chapter:** 5-11
- **Exercise #:** 73
A teacher has 24 colored pencils and 18 pictures to be placed in groups with the same number of pencils in each group and the same number of pictures in each group. If each group must have the same type of items, how many groups of pencils and how many groups of pictures can be made? How many of each item will be in a group?
**Note:** Recall GCF, you may make a picture as well.
### Explanation:
The exercise involves determining how to equally divide 24 colored pencils and 18 pictures using the greatest common factor (GCF) method. The goal is to find the number of groups that can be evenly made for both pencils and pictures, ensuring that each group has the same number of items.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5f86aa8d-c674-4fd0-8710-3811fc768ae9%2F9aa211e9-4b46-44b2-910f-ca63a1bbc754%2Fdea3beg_processed.jpeg&w=3840&q=75)
![**Section 5-2**
**Page #**
- *Book:* 179
- *Chapter:* 5-21
- *Exercise #* 1
---
**Perform the indicated operation (w/o calculator).**
\[
-6 + 5 =
\]
**Note:** Recall operations over signed numbers.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5f86aa8d-c674-4fd0-8710-3811fc768ae9%2F9aa211e9-4b46-44b2-910f-ca63a1bbc754%2Fx8re068_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)