Exercise: Develop an IPR curve for the well described below. The drainage radius is 1490 ft and the skin effect is zero. 1.6 kH = 13 md (from cores) koh p[1 – 0.2(Puf/ P) – 0.8(Puf/P)²] 254.2B.HO[In(0.472re/rw) + s] 1.5 h = 115 ft 1.4 Pi = 4350 psi Рь 3 4350 psi 1.3 When p = 4350 psi, 1.2 Co = 1.2 × 10-5 Cu = 3 x 106 psi- 1.1 1.0 !- 0,2 Pws 0.8 1000 2000 3000 4000 5000 Cf = 3.1 × 10-6 Psi-1 Pressure (psi) 90 = 1411. Pwf C; = 1.25 × 10-5 psi- 0.020 0.016 Ho = 1.7 cp 5000 0.012 Yo = 32° API 0.008 Ys = 0.71 4000 T = 180°F 0.004 Tpc = 395°R Тре 0.000 3000 1000 2000 3000 4000 5000 D= 4350 Pressure (psi) Ppc = 667 psi Sy = 0.3 2000 1000.0 $ = 0.21 800.0 %3D 1000 rw = 0.406 ft 600.0 400.0 200.0 500 1000 1500 Flowrate, q, (STB/d) 0.0 The IPR curve is no longer straight line! 1000 2000 3000 Pressure (psi) 4000 5000 Rs(SCF/STB) 3, (res t/sCF) , (res BBI/STB) Flowing Bottomhole Pressure, Pw (psi)
Exercise: Develop an IPR curve for the well described below. The drainage radius is 1490 ft and the skin effect is zero. 1.6 kH = 13 md (from cores) koh p[1 – 0.2(Puf/ P) – 0.8(Puf/P)²] 254.2B.HO[In(0.472re/rw) + s] 1.5 h = 115 ft 1.4 Pi = 4350 psi Рь 3 4350 psi 1.3 When p = 4350 psi, 1.2 Co = 1.2 × 10-5 Cu = 3 x 106 psi- 1.1 1.0 !- 0,2 Pws 0.8 1000 2000 3000 4000 5000 Cf = 3.1 × 10-6 Psi-1 Pressure (psi) 90 = 1411. Pwf C; = 1.25 × 10-5 psi- 0.020 0.016 Ho = 1.7 cp 5000 0.012 Yo = 32° API 0.008 Ys = 0.71 4000 T = 180°F 0.004 Tpc = 395°R Тре 0.000 3000 1000 2000 3000 4000 5000 D= 4350 Pressure (psi) Ppc = 667 psi Sy = 0.3 2000 1000.0 $ = 0.21 800.0 %3D 1000 rw = 0.406 ft 600.0 400.0 200.0 500 1000 1500 Flowrate, q, (STB/d) 0.0 The IPR curve is no longer straight line! 1000 2000 3000 Pressure (psi) 4000 5000 Rs(SCF/STB) 3, (res t/sCF) , (res BBI/STB) Flowing Bottomhole Pressure, Pw (psi)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![Exercise: Develop an IPR curve for the well described below. The drainage radius is 1490 ft
and the skin effect is zero.
1.6
k = 13 md (from cores)
1.5
köhỹ[1 – 0.2(Pwƒ/p) – 0.8(Pwƒ/P)²]
254.2 Boo[In(0.472re/rw)+s]
90 ==
h = 115 ft
1.4
Pi = 4350 psi
Pb = 4350 psi
1.3
1.2
1.1
When p = 4350 psi,
Co
1.2 x 10-5
Cw =
3 x 10-6
1.0
0
4000
5000
3000
Pressure (psi)
Psi-1
Psi-1
Cf = 3.1 x 10-6
90 = 1411. 1-0.2 - 0.8
1411 [1
- 0.8 (Por)
P
p
c₁ = 1.25 × 10-5 psi-¹
x
F = 1.7 cp
Ho
5000
Yo = 32° API
Yg = 0.71
4000
T = 180°F
3000
5000
Tpc = 395°R
Ppc = 667 psi
2000 3000
Pressure (psi)
2000
Sw = 0.3
1000
0
5000
2000
3000 4000
Pressure (psi)
$ = 0.21
rw = 0.406 ft
Bo (res BBI/STB)
R$ (SCF/STB)
0.020
0.016
0.012
0.008
0.004
0.000
1000.0
B. (res ft³/SCF)
800.0
600.0
400.0
200.0
0.0
0
0
1000
1000
1000
2000
4000
Flowing Bottomhole Pressure. p (psi)
p=4350
0
500
1500
1000
Flowrate, q (STB/d)
The IPR curve is no longer straight line!](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb492b9f4-e556-4f7b-a8d5-7076ae35298b%2F74a8cccf-9808-4673-97c0-82a40828f532%2Fhdh6r3q_processed.png&w=3840&q=75)
Transcribed Image Text:Exercise: Develop an IPR curve for the well described below. The drainage radius is 1490 ft
and the skin effect is zero.
1.6
k = 13 md (from cores)
1.5
köhỹ[1 – 0.2(Pwƒ/p) – 0.8(Pwƒ/P)²]
254.2 Boo[In(0.472re/rw)+s]
90 ==
h = 115 ft
1.4
Pi = 4350 psi
Pb = 4350 psi
1.3
1.2
1.1
When p = 4350 psi,
Co
1.2 x 10-5
Cw =
3 x 10-6
1.0
0
4000
5000
3000
Pressure (psi)
Psi-1
Psi-1
Cf = 3.1 x 10-6
90 = 1411. 1-0.2 - 0.8
1411 [1
- 0.8 (Por)
P
p
c₁ = 1.25 × 10-5 psi-¹
x
F = 1.7 cp
Ho
5000
Yo = 32° API
Yg = 0.71
4000
T = 180°F
3000
5000
Tpc = 395°R
Ppc = 667 psi
2000 3000
Pressure (psi)
2000
Sw = 0.3
1000
0
5000
2000
3000 4000
Pressure (psi)
$ = 0.21
rw = 0.406 ft
Bo (res BBI/STB)
R$ (SCF/STB)
0.020
0.016
0.012
0.008
0.004
0.000
1000.0
B. (res ft³/SCF)
800.0
600.0
400.0
200.0
0.0
0
0
1000
1000
1000
2000
4000
Flowing Bottomhole Pressure. p (psi)
p=4350
0
500
1500
1000
Flowrate, q (STB/d)
The IPR curve is no longer straight line!
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY