exercise as a linear programming problem. Ace Novelty manufactures Giant Pandas and Saint Bernards. Each Panda requires 1.5 yd2 of plush, 30 ft3 of stuffing, and 5 pieces of trim; each Saint Bernard requires 2 yd2 of plush, 35 ft3 of stuffing, and 8 pieces of trim. The profit for each Panda is $20 and the profit for each Saint Bernard is $30. If 3600 yd2 of plush, 66,000 ft3 of stuffing and 13,600 pieces of trim are available, how many of each of the stuffed animals should the company manufacture to maximize profit P in dollars? (Let x represent the number of Giant Pandas to be manufactured and y represent the number of Saint Bernards to be manufactured.)
ormulate but do not solve the following exercise as a linear programming problem.
Ace Novelty manufactures Giant Pandas and Saint Bernards. Each Panda requires 1.5 yd2 of plush, 30 ft3 of stuffing, and 5 pieces of trim; each Saint Bernard requires 2 yd2 of plush, 35 ft3 of stuffing, and 8 pieces of trim. The profit for each Panda is $20 and the profit for each Saint Bernard is $30. If 3600 yd2 of plush, 66,000 ft3 of stuffing and 13,600 pieces of trim are available, how many of each of the stuffed animals should the company manufacture to maximize profit P in dollars? (Let x represent the number of Giant Pandas to be manufactured and y represent the number of Saint Bernards to be manufactured.)
Maximize | P | = |
|
plush |
|
||
stuffing |
|
||
trim |
|
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images