Exercise 6.6.10. Consider f(x) = 1/√1-x. (a) Generate the Taylor series for f centered at zero, and use Lagrange's Remainder Theorem to show the series converges to f on [0, 1/2]. (The case x < 1/2 is more straightforward while x = 1/2 requires some extra care.) What happens when we attempt this with x > 1/2? (b) Use Cauchy's Remainder Theorem proved in Exercise 6.6.9 to show the series representation for f holds on [0, 1).

College Algebra
1st Edition
ISBN:9781938168383
Author:Jay Abramson
Publisher:Jay Abramson
Chapter6: Exponential And Logarithmic Functions
Section6.2: Graphs Of Exponential Functions
Problem 52SE: Prove the conjecture made in the previous exercise.
icon
Related questions
Question

Show x<1/2, then x=1/2, and then x>1/2. 

Exercise 6.6.10. Consider f(x) = 1/√1-x.
(a) Generate the Taylor series for f centered at zero, and use Lagrange's
Remainder Theorem to show the series converges to f on [0, 1/2]. (The
case x < 1/2 is more straightforward while x = 1/2 requires some extra
care.) What happens when we attempt this with x > 1/2?
(b) Use Cauchy's Remainder Theorem proved in Exercise 6.6.9 to show the
series representation for f holds on [0, 1).
Transcribed Image Text:Exercise 6.6.10. Consider f(x) = 1/√1-x. (a) Generate the Taylor series for f centered at zero, and use Lagrange's Remainder Theorem to show the series converges to f on [0, 1/2]. (The case x < 1/2 is more straightforward while x = 1/2 requires some extra care.) What happens when we attempt this with x > 1/2? (b) Use Cauchy's Remainder Theorem proved in Exercise 6.6.9 to show the series representation for f holds on [0, 1).
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer