Exercise 5.2.5. Let fa(x) = { xa if x > 0 0 if x <0. (a) For which values of a is f continuous at zero? (b) For which values of a is ƒ differentiable at zero? In this case, is the derivative function continuous? (c) For which values of a is f twice-differentiable? Theorem 4.3.2 (Characterizations of Continuity). Let f AR, and let CE A. The function f is continuous at c if and only if any one of the following three conditions is met: (i) For all e> 0, there exists a 8> 0 such that \x-c\ <8 (and x E A) implies |f(x) = f(c)| < €; - (ii) For all V.(f(c)), there exists a Vs (c) with the property that x = V&(c) (and TEA) implies f(x) = V. (f(c)); (iii) If (xn) → c (with xn E A), then f(xn) → f(c). If c is a limit point of A, then the above conditions are equivalent to (iv) lim f(x) = f(c). X-C
Exercise 5.2.5. Let fa(x) = { xa if x > 0 0 if x <0. (a) For which values of a is f continuous at zero? (b) For which values of a is ƒ differentiable at zero? In this case, is the derivative function continuous? (c) For which values of a is f twice-differentiable? Theorem 4.3.2 (Characterizations of Continuity). Let f AR, and let CE A. The function f is continuous at c if and only if any one of the following three conditions is met: (i) For all e> 0, there exists a 8> 0 such that \x-c\ <8 (and x E A) implies |f(x) = f(c)| < €; - (ii) For all V.(f(c)), there exists a Vs (c) with the property that x = V&(c) (and TEA) implies f(x) = V. (f(c)); (iii) If (xn) → c (with xn E A), then f(xn) → f(c). If c is a limit point of A, then the above conditions are equivalent to (iv) lim f(x) = f(c). X-C
College Algebra
7th Edition
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:James Stewart, Lothar Redlin, Saleem Watson
Chapter2: Functions
Section2.4: Average Rate Of Change Of A Function
Problem 2E
Related questions
Question
![Exercise 5.2.5. Let fa(x) = {
xa
if x > 0
0
if x <0.
(a) For which values of a is f continuous at zero?
(b) For which values of a is ƒ differentiable at zero? In this case, is the
derivative function continuous?
(c) For which values of a is f twice-differentiable?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc6389447-1237-4af0-b5c6-eb1260425b55%2F6be36cf4-e692-480c-9b89-92e9ce551305%2Fkwpwzji_processed.png&w=3840&q=75)
Transcribed Image Text:Exercise 5.2.5. Let fa(x) = {
xa
if x > 0
0
if x <0.
(a) For which values of a is f continuous at zero?
(b) For which values of a is ƒ differentiable at zero? In this case, is the
derivative function continuous?
(c) For which values of a is f twice-differentiable?
![Theorem 4.3.2 (Characterizations of Continuity). Let f AR, and let
CE A. The function f is continuous at c if and only if any one of the following
three conditions is met:
(i) For all e> 0, there exists a 8> 0 such that \x-c\ <8 (and x E A) implies
|f(x) = f(c)| < €;
-
(ii) For all V.(f(c)), there exists a Vs (c) with the property that x = V&(c) (and
TEA) implies f(x) = V. (f(c));
(iii) If (xn) → c (with xn E A), then f(xn) → f(c).
If c is a limit point of A, then the above conditions are equivalent to
(iv) lim f(x) = f(c).
X-C](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc6389447-1237-4af0-b5c6-eb1260425b55%2F6be36cf4-e692-480c-9b89-92e9ce551305%2F1apmv1_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Theorem 4.3.2 (Characterizations of Continuity). Let f AR, and let
CE A. The function f is continuous at c if and only if any one of the following
three conditions is met:
(i) For all e> 0, there exists a 8> 0 such that \x-c\ <8 (and x E A) implies
|f(x) = f(c)| < €;
-
(ii) For all V.(f(c)), there exists a Vs (c) with the property that x = V&(c) (and
TEA) implies f(x) = V. (f(c));
(iii) If (xn) → c (with xn E A), then f(xn) → f(c).
If c is a limit point of A, then the above conditions are equivalent to
(iv) lim f(x) = f(c).
X-C
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
![Algebra: Structure And Method, Book 1](https://www.bartleby.com/isbn_cover_images/9780395977224/9780395977224_smallCoverImage.gif)
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
![Algebra and Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305071742/9781305071742_smallCoverImage.gif)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning