Exercise 1. Let (W₁, <1) and (W2, <2) be linear orders such that W₁ W20; and let be the linear ordering on W₁ × W2 defined by (a,b) and only if either: a <1 c; or ac and b <2 d. 0 and (c,d) if Prove that (W₁x W2, ) is a well-ordering if and only if (W₁, <1) and (W2, <2) are both well-orderings. Exercise 2. Suppose that (W₁, <) and (W2, <) are well-orderings. (a) Prove that if there exists an order-preserving map f: W₁→ W2, then (W₁, <) is isomorphic to an initial segment of (W2, <). (b) Prove that if there exist order-preserving maps f: W₁ - → W₂ and g: W2 W₁, then (W₁, <) and (W2, <) are isomorphic. (Hint: Apply the Comparability Theorem.)
Exercise 1. Let (W₁, <1) and (W2, <2) be linear orders such that W₁ W20; and let be the linear ordering on W₁ × W2 defined by (a,b) and only if either: a <1 c; or ac and b <2 d. 0 and (c,d) if Prove that (W₁x W2, ) is a well-ordering if and only if (W₁, <1) and (W2, <2) are both well-orderings. Exercise 2. Suppose that (W₁, <) and (W2, <) are well-orderings. (a) Prove that if there exists an order-preserving map f: W₁→ W2, then (W₁, <) is isomorphic to an initial segment of (W2, <). (b) Prove that if there exist order-preserving maps f: W₁ - → W₂ and g: W2 W₁, then (W₁, <) and (W2, <) are isomorphic. (Hint: Apply the Comparability Theorem.)
Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter5: Inner Product Spaces
Section5.CM: Cumulative Review
Problem 4CM: Use a software program or a graphing utility to write v as a linear combination of u1, u2, u3, u4,...
Related questions
Question
Set theory
![Exercise 1. Let (W₁, <1) and (W2, <2) be linear orders such that W₁
W20; and let be the linear ordering on W₁ × W2 defined by (a,b)
and only if either:
a <1 c; or
ac and b <2 d.
0 and
(c,d) if
Prove that (W₁x W2, ) is a well-ordering if and only if (W₁, <1) and (W2, <2) are
both well-orderings.
Exercise 2. Suppose that (W₁, <) and (W2, <) are well-orderings.
(a) Prove that if there exists an order-preserving map f: W₁→ W2,
then (W₁, <) is isomorphic to an initial segment of (W2, <).
(b) Prove that if there exist order-preserving maps f: W₁ -
→ W₂ and
g: W2 W₁, then (W₁, <) and (W2, <) are isomorphic.
(Hint: Apply the Comparability Theorem.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd597ffd2-5c4b-4c2e-8332-77ce1607dac1%2F7c156680-c7f9-47ad-b699-a1ff490e6dec%2Fd4jlank_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Exercise 1. Let (W₁, <1) and (W2, <2) be linear orders such that W₁
W20; and let be the linear ordering on W₁ × W2 defined by (a,b)
and only if either:
a <1 c; or
ac and b <2 d.
0 and
(c,d) if
Prove that (W₁x W2, ) is a well-ordering if and only if (W₁, <1) and (W2, <2) are
both well-orderings.
Exercise 2. Suppose that (W₁, <) and (W2, <) are well-orderings.
(a) Prove that if there exists an order-preserving map f: W₁→ W2,
then (W₁, <) is isomorphic to an initial segment of (W2, <).
(b) Prove that if there exist order-preserving maps f: W₁ -
→ W₂ and
g: W2 W₁, then (W₁, <) and (W2, <) are isomorphic.
(Hint: Apply the Comparability Theorem.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning