EXAMPLE 4.9 Students who seek therapy at university counseling centers often do not attend many sessions. For example, in one study, the median number of therapy sessions was 3 and the mean was 4.6 (Hatchett, 2003). Let’s examine the spread of fictional scores for a sample of five students: 1, 2, 4, 4, and 10 therapy sessions, with a mean of 4.2. We find out how far each score deviates from the mean by subtracting the mean from every score. First, we label with an X the column that lists the scores. Here, the second column includes the results we get when we subtract the mean from each score, or X − M. We call each of these a deviation from the mean (or just a deviation)—the amount that a score in a sample differs from the mean of the sample. X X − M   1 − 3.2   2 − 2.2   4 − 0.2   4 − 0.2 10     5.8 But we can’t just take the mean of the deviations. If we do (and if you try this, don’t forget the signs—negative and positive), we get 0—every time. Are you surprised? Remember, the mean is the point at which all scores are perfectly balanced. Mathematically, the scores have to balance out. Yet we know that there is variability among these scores. The number representing the amount of variability is certainly not 0! When we ask students for ways to eliminate the negative signs, two suggestions typically come up: (1) Take the absolute value of the deviations, thus making them all positive, or (2) square all the scores, again making them all positive. It turns out that the latter, squaring all the deviations, is how statisticians solve this problem. Once we square the deviations, we can take their average and get a measure of variability. Later (using a beautifully descriptive term created by our students), we will “unsquare” those deviations in order to calculate the standard deviation

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question

EXAMPLE 4.9

Students who seek therapy at university counseling centers often do not attend many sessions. For example, in one study, the median number of therapy sessions was 3 and the mean was 4.6 (Hatchett, 2003). Let’s examine the spread of fictional scores for a sample of five students: 1, 2, 4, 4, and 10 therapy sessions, with a mean of 4.2. We find out how far each score deviates from the mean by subtracting the mean from every score. First, we label with an X the column that lists the scores. Here, the second column includes the results we get when we subtract the mean from each score, or X − M. We call each of these a deviation from the mean (or just a deviation)—the amount that a score in a sample differs from the mean of the sample.

X X − M
  1 − 3.2
  2 − 2.2
  4 − 0.2
  4 − 0.2
10     5.8

But we can’t just take the mean of the deviations. If we do (and if you try this, don’t forget the signs—negative and positive), we get 0—every time. Are you surprised? Remember, the mean is the point at which all scores are perfectly balanced. Mathematically, the scores have to balance out. Yet we know that there is variability among these scores. The number representing the amount of variability is certainly not 0!

When we ask students for ways to eliminate the negative signs, two suggestions typically come up: (1) Take the absolute value of the deviations, thus making them all positive, or (2) square all the scores, again making them all positive. It turns out that the latter, squaring all the deviations, is how statisticians solve this problem. Once we square the deviations, we can take their average and get a measure of variability. Later (using a beautifully descriptive term created by our students), we will “unsquare” those deviations in order to calculate the standard deviation

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman