EXAMPLE 7.2 Consider the two equally-likely signals s₁ (t) and s2(t) that are transmitted, over an AWGN channel with the noise power spectral density of No/2, to represent bits 1 and 0, where we have: S1(t)=-S2(t)=√√2 exp(-2t)u(t) The receiver makes its decision solely based on observation of the received signal over a restricted interval of interest. Determine the average bit error rate in terms of Q-function, assuming the interval is [0,3]. Contrast numerically with the performance of an optimum receiver that observes. all the received signal, i.e., the interval of interest is (-∞, ∞). EXAMPLE 7.4 An input bit sequence consisting of 100111000 is applied to a DBPSK system. Determine the cor- responding transmitted bits, and show how the phase comparison can be used to determine the output sequence.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
EXAMPLE 7.2
Consider the two equally-likely signals s₁ (t) and s2(t) that are transmitted, over an AWGN channel
with the noise power spectral density of No/2, to represent bits 1 and 0, where we have:
S1(t)=-S2(t)=√√2 exp(-2t)u(t)
The receiver makes its decision solely based on observation of the received signal over a restricted
interval of interest. Determine the average bit error rate in terms of Q-function, assuming the
interval is [0,3]. Contrast numerically with the performance of an optimum receiver that observes.
all the received signal, i.e., the interval of interest is (-∞, ∞).
Transcribed Image Text:EXAMPLE 7.2 Consider the two equally-likely signals s₁ (t) and s2(t) that are transmitted, over an AWGN channel with the noise power spectral density of No/2, to represent bits 1 and 0, where we have: S1(t)=-S2(t)=√√2 exp(-2t)u(t) The receiver makes its decision solely based on observation of the received signal over a restricted interval of interest. Determine the average bit error rate in terms of Q-function, assuming the interval is [0,3]. Contrast numerically with the performance of an optimum receiver that observes. all the received signal, i.e., the interval of interest is (-∞, ∞).
EXAMPLE 7.4
An input bit sequence consisting of 100111000 is applied to a DBPSK system. Determine the cor-
responding transmitted bits, and show how the phase comparison can be used to determine the
output sequence.
Transcribed Image Text:EXAMPLE 7.4 An input bit sequence consisting of 100111000 is applied to a DBPSK system. Determine the cor- responding transmitted bits, and show how the phase comparison can be used to determine the output sequence.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,