Example 21.1.2. The integral fo cos z dz/2², where C is the circle |2| = 1, is zero because 22n (-1)". (2n)! 1 1 + 4! COS Z z2 22 n=0 z2 = 0 (no 1/z term in the Laurent expansion). Therefore, by Equation (21.1) yields b1 the integral must vanish. When C is the circle |2| = 2, fce² dz/(z – 1)³ = ine because e = ee-1 Σ (z – 1)" n! (z – 1)² = e = e |1+ (z – 1) + 2! n=0 and 1 1 1 = e +.. (z – 1)2 (z – 1)3 Thus, b1 = e/2, and the integral is 2rib1 (z – 1)3 = ine.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

he question is about complex analysis and Calculus of Residues.

One of the 2 pictures is an example of a solution.

Please solve parts j, k and l.

Example 21.1.2. The integral f cos z dz/z², where C is the circle |z| = 1, is
zero because
22n
(-1)".
(2n)!
COS Z
1
1
22
-
z2
2
2
2
4!
n=0
0 (no 1/z term in the Laurent expansion). Therefore, by Equation (21.1)
yields bị
the integral must vanish.
When C is the circle |2|
2, fc e dz/(z – 1)³ = ine because
e = ee
(z – 1)"
= e |1+ (z – 1) +
2!
(z – 1)?
= e
n!
n=0
and
ez
1
1
1
= e
(z – 1)3
1)3
Thus, b1 = e/2, and the integral is 2ribi = ine.
(z – 1)2
2
-
Transcribed Image Text:Example 21.1.2. The integral f cos z dz/z², where C is the circle |z| = 1, is zero because 22n (-1)". (2n)! COS Z 1 1 22 - z2 2 2 2 4! n=0 0 (no 1/z term in the Laurent expansion). Therefore, by Equation (21.1) yields bị the integral must vanish. When C is the circle |2| 2, fc e dz/(z – 1)³ = ine because e = ee (z – 1)" = e |1+ (z – 1) + 2! (z – 1)? = e n! n=0 and ez 1 1 1 = e (z – 1)3 1)3 Thus, b1 = e/2, and the integral is 2ribi = ine. (z – 1)2 2 -
21.1. Evaluate each of the following integrals, for all of which C is the circle
|2| = 3:
ez
dz.
(b) P z(2 – in)
COS Z
4z – 3
dz.
(c) P -
dz.
(a)
. 2(2 -
c z(z – 2)
22 +1
dz.
(d) P 2 – 1)
cosh z
dz.
+ 72
1
(f)
- COS Z
dz.
(e)
22
(:).
of
dz
dz.
(i) P 3(2+5)
sinh z
dz.
4
(g)
(h)
Z COS
dz.
dz
(1)
dz.
22
dz.
(j)
(k)
Jc sinh 2z
tan z dz.
dz
ez dz
(m)
dz.
22 sin z
(n)
(z – 1)(2 – 2)*
Transcribed Image Text:21.1. Evaluate each of the following integrals, for all of which C is the circle |2| = 3: ez dz. (b) P z(2 – in) COS Z 4z – 3 dz. (c) P - dz. (a) . 2(2 - c z(z – 2) 22 +1 dz. (d) P 2 – 1) cosh z dz. + 72 1 (f) - COS Z dz. (e) 22 (:). of dz dz. (i) P 3(2+5) sinh z dz. 4 (g) (h) Z COS dz. dz (1) dz. 22 dz. (j) (k) Jc sinh 2z tan z dz. dz ez dz (m) dz. 22 sin z (n) (z – 1)(2 – 2)*
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Basics of Inferential Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,