Example #2 An 8-ft (2.438-m) wide rectangular channel with a bed slope of 0.0004 ft/ft(m/m) has a depth of flow of 2 ft (0.610 m). Assuming steady uniform flow, determine the discharge in the channel. The Manning roughness coefficient is n=0.015. Solve using Sl units.
Example #2 An 8-ft (2.438-m) wide rectangular channel with a bed slope of 0.0004 ft/ft(m/m) has a depth of flow of 2 ft (0.610 m). Assuming steady uniform flow, determine the discharge in the channel. The Manning roughness coefficient is n=0.015. Solve using Sl units.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![where n is the Manning roughness coefficient. Sustituting into
the Chezy equation results in the Manning equation:
V 1 R²/3 51/2
n
=
which is valid for Sl units and So = Sf.
Manning equation in Sl units can also be expressed as:
1
AR²/3 S1/2
Q
=
n](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4ce8b870-93ef-497a-8c2a-bbbd1041dd5b%2F020737a0-4ab6-4f62-8140-a60ae5d925fb%2F2njqgr_processed.jpeg&w=3840&q=75)
Transcribed Image Text:where n is the Manning roughness coefficient. Sustituting into
the Chezy equation results in the Manning equation:
V 1 R²/3 51/2
n
=
which is valid for Sl units and So = Sf.
Manning equation in Sl units can also be expressed as:
1
AR²/3 S1/2
Q
=
n
![Example #2
An 8-ft (2.438-m) wide rectangular channel with a bed slope of
0.0004 ft/ft(m/m) has a depth of flow of 2 ft (0.610 m).
Assuming steady uniform flow, determine the discharge in the
channel. The Manning roughness coefficient is n=0.015. Solve
using Sl units.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4ce8b870-93ef-497a-8c2a-bbbd1041dd5b%2F020737a0-4ab6-4f62-8140-a60ae5d925fb%2Finkrvsp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Example #2
An 8-ft (2.438-m) wide rectangular channel with a bed slope of
0.0004 ft/ft(m/m) has a depth of flow of 2 ft (0.610 m).
Assuming steady uniform flow, determine the discharge in the
channel. The Manning roughness coefficient is n=0.015. Solve
using Sl units.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY