Example 2-3. A simple power system is shown in Figure 2–22. This system con- tains a 480-V generator connected to an ideal 1:10 step-up transformer, a transmission line, an ideal 20:1 step-down transformer, and a load. The impedance of the transmission line is 20 + j60 N, and the impedance of the load is 10230°N. The base values for this system are chosen to be 480 V and 10 kVA at the generator. (a) Find the base voltage, current, impedance, and apparent power at every point in the power system. (b) Convert this system to its per-unit equivalent circuit. (c) Find the power supplied to the load in this system. (d) Find the power lost in the transmission line. Line 20Ω Iload Zioad = 10 30°N j60 N 1:10 20:1 Zine 480 0° V Region I Region 2 Region 3
Example 2-3. A simple power system is shown in Figure 2–22. This system con- tains a 480-V generator connected to an ideal 1:10 step-up transformer, a transmission line, an ideal 20:1 step-down transformer, and a load. The impedance of the transmission line is 20 + j60 N, and the impedance of the load is 10230°N. The base values for this system are chosen to be 480 V and 10 kVA at the generator. (a) Find the base voltage, current, impedance, and apparent power at every point in the power system. (b) Convert this system to its per-unit equivalent circuit. (c) Find the power supplied to the load in this system. (d) Find the power lost in the transmission line. Line 20Ω Iload Zioad = 10 30°N j60 N 1:10 20:1 Zine 480 0° V Region I Region 2 Region 3
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
100%
![Example 2-3. A simple power system is shown in Figure 2–22. This system con-
tains a 480-V generator connected to an ideal 1:10 step-up transformer, a transmission line,
an ideal 20:1 step-down transformer, and a load. The impedance of the transmission line is
20 + j60 N, and the impedance of the load is 10230°N. The base values for this system are
chosen to be 480 V and 10 kVA at the generator.
(a) Find the base voltage, current, impedance, and apparent power at every point in
the power system.
(b) Convert this system to its per-unit equivalent circuit.
(c) Find the power supplied to the load in this system.
(d) Find the power lost in the transmission line.
line
Iload Zioad = 10 Z 30°N
20Ω
j60 N
1:10
20:1
Zine
VG
480 Z0° V
Region 1
Region 2
Region 3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4b51c1ba-2ddb-48d9-a416-544fa4cda51f%2Fe50f6ca1-fca2-4304-b885-d73d900ae1c2%2Fmotq5y6_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Example 2-3. A simple power system is shown in Figure 2–22. This system con-
tains a 480-V generator connected to an ideal 1:10 step-up transformer, a transmission line,
an ideal 20:1 step-down transformer, and a load. The impedance of the transmission line is
20 + j60 N, and the impedance of the load is 10230°N. The base values for this system are
chosen to be 480 V and 10 kVA at the generator.
(a) Find the base voltage, current, impedance, and apparent power at every point in
the power system.
(b) Convert this system to its per-unit equivalent circuit.
(c) Find the power supplied to the load in this system.
(d) Find the power lost in the transmission line.
line
Iload Zioad = 10 Z 30°N
20Ω
j60 N
1:10
20:1
Zine
VG
480 Z0° V
Region 1
Region 2
Region 3
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,