Evaluate the following limit. 2 ln ( ₁ + 2/1) ² x X lim X→∞ lim X→∞ 1+ 2 X 2 ln x = (Type an exact answer.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Evaluate the following limit.

\[
\lim_{{x \to \infty}} \left(1 + \frac{2}{x}\right)^{2 \ln x}
\]

---

\[
\lim_{{x \to \infty}} \left(1 + \frac{2}{x}\right)^{2 \ln x} = \boxed{\phantom{0}} \quad \text{(Type an exact answer.)}
\]
Transcribed Image Text:Evaluate the following limit. \[ \lim_{{x \to \infty}} \left(1 + \frac{2}{x}\right)^{2 \ln x} \] --- \[ \lim_{{x \to \infty}} \left(1 + \frac{2}{x}\right)^{2 \ln x} = \boxed{\phantom{0}} \quad \text{(Type an exact answer.)} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,