1. Evaluate the following limits: (b) lim (te¯(¹/¹). (d) lim (x tan 1-0 t lim (1²1 (e) lim 1 (₁). log t 13³33

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Limits Problem Set**

1. **Evaluate the following limits:**

   (b) \(\lim_{{t \to 0}} \left( t e^{-\left( 1/t \right)} \right)\).
   
   (d) \(\lim_{{x \to \infty}} \left( x \tan \frac{3}{x} \right)\).
   
   (e) \(\lim_{{t \to 1}} \left( \frac{t}{t-1} - \frac{1}{\log t} \right)\).
   
   (i) \(\lim_{{x \to 0}} (\sin x)^x\).
Transcribed Image Text:**Limits Problem Set** 1. **Evaluate the following limits:** (b) \(\lim_{{t \to 0}} \left( t e^{-\left( 1/t \right)} \right)\). (d) \(\lim_{{x \to \infty}} \left( x \tan \frac{3}{x} \right)\). (e) \(\lim_{{t \to 1}} \left( \frac{t}{t-1} - \frac{1}{\log t} \right)\). (i) \(\lim_{{x \to 0}} (\sin x)^x\).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,