Evaluate the following integrals using Cauchy Residue Theory. All closed contours are traversed CCw. z +3 For problems 1-3, evaluate I = 0 dz on the given contours. Question #1) Question #2) Question #3) (z - 1)(z + 2)2 C;: Iz - 2i + 1| = 3 C2: |z - il = 3 C3: |z + = 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
I need problem 1 to 3 along with correct options from second picture 1 to 3 please do it perfectly and in clear handwriting
Question 1)
а. 2.7925
b. 2.9042
c. 3.0204
Choose |I| from the following:
d. 3.1412
е. 3.2668
f. 3.3975
g. 3.5334
h. 3.6747
Question 2)
Choose |1| from the following:
а. 0
b. 1
с. 2
d. 3
e. 4
f. 5
g. 6
h. 7
Question 3)
Choose |1| from the following:
а. 0
b. 1
с. 2
d. 3
e. 4
f. 5
g. 6
h. 7
Question 4)
Choose |1| from the following:
a.
1.2414
b. 1.2911
с. 1.3427
d. 1.3964
е. 14523
f.
1.5104
g. 1.5708
1.6336
Transcribed Image Text:Question 1) а. 2.7925 b. 2.9042 c. 3.0204 Choose |I| from the following: d. 3.1412 е. 3.2668 f. 3.3975 g. 3.5334 h. 3.6747 Question 2) Choose |1| from the following: а. 0 b. 1 с. 2 d. 3 e. 4 f. 5 g. 6 h. 7 Question 3) Choose |1| from the following: а. 0 b. 1 с. 2 d. 3 e. 4 f. 5 g. 6 h. 7 Question 4) Choose |1| from the following: a. 1.2414 b. 1.2911 с. 1.3427 d. 1.3964 е. 14523 f. 1.5104 g. 1.5708 1.6336
Evaluate the following integrals using Cauchy Residue Theory.
All closed contours are traversed CCw.
z + 3
For problems 1-3, evaluate I = 0
dz on the given contours.
(z - 1)(z + 2)2
Question #1)
Question #2)
Question #3)
C;: Iz - 2i + 1| = 3
C2: Iz - il = 3
C3: |z + = 1
1
dz on the given contours.
For problems 4 - 6, evaluate I =
- 1
Question #4)
Question #5)
Question #6)
C4: |z - 3| = 3
C5: Iz + 2i| = 2.5
C6: Iz + 2 - 2i| = 3
de
Question #7)
12 - sin e
sin? 0
-27
Question #8)
de
5 + 2 cos 0
1.
Question #9)
dx
x2 + 2x + 10
1.
Question #10)
x3 - x2 - x - 15 dx
All answers to the Blackboard thing are multiple choice.
Note Well! The answers are the ABSOLUTE VALUE of the integral.
Transcribed Image Text:Evaluate the following integrals using Cauchy Residue Theory. All closed contours are traversed CCw. z + 3 For problems 1-3, evaluate I = 0 dz on the given contours. (z - 1)(z + 2)2 Question #1) Question #2) Question #3) C;: Iz - 2i + 1| = 3 C2: Iz - il = 3 C3: |z + = 1 1 dz on the given contours. For problems 4 - 6, evaluate I = - 1 Question #4) Question #5) Question #6) C4: |z - 3| = 3 C5: Iz + 2i| = 2.5 C6: Iz + 2 - 2i| = 3 de Question #7) 12 - sin e sin? 0 -27 Question #8) de 5 + 2 cos 0 1. Question #9) dx x2 + 2x + 10 1. Question #10) x3 - x2 - x - 15 dx All answers to the Blackboard thing are multiple choice. Note Well! The answers are the ABSOLUTE VALUE of the integral.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,