Estimate Timothy Goebel's initial takeoff speed, initial rotational velocity, and initial angular momentum when he performs a quadruple lutz. Goebel's mass is about 55 kg and the height of the jump is about 0.64 m, Note that his angular speed will change quite a bit during the jump, as he begins with arms outstretched and then pulls them in. Your answer should be accurate to within a factor of 2, if you are careful. (We assume that we can model him as a 2.0-m long cylindrical with an average radius of 0.15 m and a mass of 55 kg. We also assume that he launches himself at an angle of 45° with the horizontal with his spread wide, and then pulls them in to increase his rotational speed during the jump. We finally assume that he can change his moment of inertial by a factor of 2 by pulling his arms in.)
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
Estimate Timothy Goebel's initial takeoff speed, initial rotational velocity, and initial
Step by step
Solved in 8 steps with 8 images