Epsilon Airlines services predominately the eastern and southeastern United States. A vast majority of Epsilon's customers make reservations through Epsilon's website, but a small percentage of customers make reservations via phone. Epsilon employs call-center personnel to handle these reservations along with any problems with the website reservation system and for the rebooking of flights for customers if their plans change or their travel is disrupted. Staffing the call center appropriately is a challenge for Epsilon's management team. Having too many employees on hand is a waste of money, but having too few results in very poor customer service and the potential loss of customers. Epsilon analysts have estimated the minimum number of call-center employees needed by day of week for the upcoming vacation season (June, July, and the first two weeks of August). These estimates are given in the following table. Day Minimum Number of Employees Needed Monday 80 Tuesday 60 Wednesday 55 Thursday 65 Friday 100 Saturday 80 Sunday 40 The call-center employees work five consecutive days and then have two consecutive days off. An employee may start work any day of the week. Each call-center employee receives the same salary. Assume that the schedule cycles and ignore start-up and stopping of the schedule. Develop a model that will minimize the total number of call-center employees needed to meet the minimum requirements.  Min =  s.t. Monday = Tuesday =  Wednesday =  Thursday =  Friday = Saturday =  Sunday =    X1, X2, X3, X4, X5, X6, X7 ≥ 0 Find the optimal solution. (X1, X2, X3, X4, X5, X6, X7) =  Give the number of call-center employees that exceed the minimum required. (M, Tu, W, Th, F, Sa, Su) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Epsilon Airlines services predominately the eastern and southeastern United States. A vast majority of Epsilon's customers make reservations through Epsilon's website, but a small percentage of customers make reservations via phone. Epsilon employs call-center personnel to handle these reservations along with any problems with the website reservation system and for the rebooking of flights for customers if their plans change or their travel is disrupted. Staffing the call center appropriately is a challenge for Epsilon's management team. Having too many employees on hand is a waste of money, but having too few results in very poor customer service and the potential loss of customers.
Epsilon analysts have estimated the minimum number of call-center employees needed by day of week for the upcoming vacation season (June, July, and the first two weeks of August). These estimates are given in the following table.
Day Minimum Number of
Employees Needed
Monday 80
Tuesday 60
Wednesday 55
Thursday 65
Friday 100
Saturday 80
Sunday 40
The call-center employees work five consecutive days and then have two consecutive days off. An employee may start work any day of the week. Each call-center employee receives the same salary. Assume that the schedule cycles and ignore start-up and stopping of the schedule. Develop a model that will minimize the total number of call-center employees needed to meet the minimum requirements. 
Min = 
s.t.
Monday =
Tuesday = 
Wednesday = 
Thursday = 
Friday =
Saturday = 
Sunday = 
 
X1, X2, X3, X4, X5, X6, X7 ≥ 0
Find the optimal solution.
(X1, X2, X3, X4, X5, X6, X7) = 
Give the number of call-center employees that exceed the minimum required.
(M, Tu, W, Th, F, Sa, Su) = 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,