Engine oil flows through a 50 mm diameter tube at an average temperature of 147°C. The flow velocity is 80 cm/s. Calculate the average heat transfer coefficient if the tube wall is maintained at a temperature of 200°C and it is 2 m long. Hint: Area can be assumed to be equal to the vertical projectiion of the tube , i.e. LD. Ans.: h = 377.36 W/m2.K . Draw an illustration. Note: use the formula on the picture
Engine oil flows through a 50 mm diameter tube at an average temperature of 147°C. The flow velocity is 80 cm/s. Calculate the average heat transfer coefficient if the tube wall is maintained at a temperature of 200°C and it is 2 m long. Hint: Area can be assumed to be equal to the vertical projectiion of the tube , i.e. LD. Ans.: h = 377.36 W/m2.K . Draw an illustration. Note: use the formula on the picture
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Engine oil flows through a 50 mm diameter tube at an average temperature of
147°C. The flow velocity is 80 cm/s. Calculate the average heat transfer coefficient if the tube wall is maintained at a temperature of 200°C and it is 2 m long. Hint: Area can be assumed to be equal to the vertical projectiion of the tube , i.e. LD. Ans.: h = 377.36 W/m2.K . Draw an illustration.
Note: use the formula on the picture

Transcribed Image Text:Convection
O Newton's Law of Cooling
Q = hA(Ts – Tf)
Where:
Q = heat transfer per unit time, J/s or W
%3D
h = convection heat transfer coefficient, W/m.K
A = heat transfer area, m2
T = surface temperature
Tf = bulk fluid temperature
%3D
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY