Elevators have many safety features. In the extremely unlikely event that the multiple steel cables supporting the elevator carriage break and the emergency brakes fail to stop it, there is an oil filled piston at the bottom of the elevator shaft to cushion the landing. Model this piston as an ideal spring and assume that the 5,500 kg carriage is initially descending at 10 m/s when it contacts the spring (initially in equilibrium). The spring brings the carriage to rest over 2 m. Use conservation of energy to determine the spring constant. Assume the friction in the system is 4000 N. You need to consider the change in gravitational potential energy for this question.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Elevators have many safety features. In the extremely unlikely event that the multiple steel cables supporting
the elevator carriage break and the emergency brakes fail to stop it, there is an oil filled piston at the bottom of
the elevator shaft to cushion the landing. Model this piston as an ideal spring and assume that the 5,500 kg
carriage is initially descending at 10 m/s when it contacts the spring (initially in equilibrium). The spring brings
the carriage to rest over 2 m. Use conservation of energy to determine the spring constant. Assume the friction
in the system is 4000 N. You need to consider the change in gravitational potential energy for this question.
Transcribed Image Text:Elevators have many safety features. In the extremely unlikely event that the multiple steel cables supporting the elevator carriage break and the emergency brakes fail to stop it, there is an oil filled piston at the bottom of the elevator shaft to cushion the landing. Model this piston as an ideal spring and assume that the 5,500 kg carriage is initially descending at 10 m/s when it contacts the spring (initially in equilibrium). The spring brings the carriage to rest over 2 m. Use conservation of energy to determine the spring constant. Assume the friction in the system is 4000 N. You need to consider the change in gravitational potential energy for this question.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 1 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON