e,f and g

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

e,f and g 

**Linear Operator Problem on \( \mathbb{R}^3 \)**

Suppose \( L \) is a linear operator on \( \mathbb{R}^3 \). We also know:

\[ L \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \quad L \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \quad L \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \]

**Tasks:**

a) Find \( A \), the matrix representation for \( L \), with respect to the standard basis.

b) If \( \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \), find the "matrix" rule for \( L \) by computing \( A \vec{x} \).

c) Solve \( A \vec{x} = \vec{0} \).

d) Give a basis for the kernel of \( L \).

e) Find a spanning set for the range of \( L \).

f) Find a basis for the range of \( L \).

g) Use the answer in f) to find any specific element in the range of \( L \).

h) Could an inverse transformation \( L^{-1} \) exist? Use work to support the answer.
Transcribed Image Text:**Linear Operator Problem on \( \mathbb{R}^3 \)** Suppose \( L \) is a linear operator on \( \mathbb{R}^3 \). We also know: \[ L \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \quad L \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \quad L \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \] **Tasks:** a) Find \( A \), the matrix representation for \( L \), with respect to the standard basis. b) If \( \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \), find the "matrix" rule for \( L \) by computing \( A \vec{x} \). c) Solve \( A \vec{x} = \vec{0} \). d) Give a basis for the kernel of \( L \). e) Find a spanning set for the range of \( L \). f) Find a basis for the range of \( L \). g) Use the answer in f) to find any specific element in the range of \( L \). h) Could an inverse transformation \( L^{-1} \) exist? Use work to support the answer.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,