eam enters the first turbine stage of a vapor power cycle with reheat and regeneration at 32 MPa, 600°C, and expands to 8 MPa. A portion of the flow is diverted to a closed feedwater heater at 8 MPa, and the remainder is reheated to 560°C before entering the second turbine stage. Expansion through the second turbine stage occurs to 1 MPa, where another portion of the flow is diverted to a second closed feedwater heater at 1 MPa. The remainder of the flow expands through the third turbine stage to 0.15 MPa, where a portion of the flow is diverted to an open generator pressure. If ea
Steam enters the first turbine stage of a vapor power cycle with reheat and regeneration at 32 MPa, 600°C, and expands to 8 MPa. A portion of the flow is diverted to a closed feedwater heater at 8 MPa, and the remainder is reheated to 560°C before entering the second turbine stage. Expansion through the second turbine stage occurs to 1 MPa, where another portion of the flow is diverted to a second closed feedwater heater at 1 MPa. The remainder of the flow expands through the third turbine stage to 0.15 MPa, where a portion of the flow is diverted to an open generator pressure. If each turbine stage has an isentropic efficiency of 85% and the pumps operate isentropically (a) sketch the layout of the cycle and number the principal state points. (b) determine the thermal efficiency of the cycle. (c) calculate the mass flow rate into the first turbine stage, in kg/h, for a net power output of 500 MW.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images