dy 2х dx - y = 6e3t, dt dt dy 3x + dt dx - 3y = 6e3t; | dt x(0) = 3, У (0) 3 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Use laplace transform to solve the given system
(a)
*- 2x -- y = 6et,
— %
- y = 6e3t,
2 - 3x + - 3y = 6e3;
dx
dy
dt
dt
x(0)
y(0) = 0.
Transcribed Image Text:(a) *- 2x -- y = 6et, — % - y = 6e3t, 2 - 3x + - 3y = 6e3; dx dy dt dt x(0) y(0) = 0.
Expert Solution
Step 1

Given, dxdt-2x-dydt-y=6e3t2dxdt-3x+dydt-3y=6e3t, x0=0, y0=0

 

We use the Laplace transforms initially, Lxt=x¯sLyt=y¯sLx't=sx¯s-x0Ly't=sy¯s-y0And in the latter stage, we use the known inverse Laplace transforms to get the required solution.

Step 2

So, we have

sx¯s-x0-2x¯s-sy¯s+y0+y¯s=6s-32sx¯s-2x0-3x¯s+sy¯s-y0-3y¯s=6s-3

Simplifying and applying the initial conditions, 

s-2x¯s+1-sy¯s=6s-3+3---12s-3x¯s+x-3y¯s=6s-3+3---2

Using Cramer's rule, 

x¯s=6s-3+31-s6s-3+6s-3s-21-s2s-3s-3=3s-3-6s-21-ss-3s-2s-3-2s-31-s=s-19s-213s2-10s+9   --------3=3-63s2-10s+9=3-2s-1062+862xt=3δt-68e10t6sin8t6Where, δt is the delta function

 

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,