Find the inverse Laplace transform of 7s + 3 s > 0 s2 + 17
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem:**
Find the inverse Laplace transform of
\[ \frac{7s + 3}{s^2 + 17} \]
for \( s > 0 \).
**Solution:**
To find the inverse Laplace transform, we can separate the expression into two fractions:
\[ \frac{7s}{s^2 + 17} + \frac{3}{s^2 + 17} \]
**Step 1: Inverse Transform of \( \frac{7s}{s^2 + 17} \)**
Recognizing the form \(\frac{s}{s^2 + a^2}\), the inverse Laplace transform is a cosine function:
\[ \mathcal{L}^{-1}\left\{ \frac{s}{s^2 + a^2} \right\} = \cos(at) \]
For our case, \( a^2 = 17 \), hence \( a = \sqrt{17} \). So the inverse Laplace transform of \( \frac{7s}{s^2 + 17} \) is:
\[ 7 \cos(\sqrt{17}t) \]
**Step 2: Inverse Transform of \( \frac{3}{s^2 + 17} \)**
Recognizing the form \(\frac{1}{s^2 + a^2}\), the inverse Laplace transform is a sine function:
\[ \mathcal{L}^{-1}\left\{ \frac{1}{s^2 + a^2} \right\} = \frac{1}{a}\sin(at) \]
Therefore, the inverse Laplace transform of \( \frac{3}{s^2 + 17} \) is:
\[ \frac{3}{\sqrt{17}} \sin(\sqrt{17} t) \]
**Final Solution:**
Combining both parts, the inverse Laplace transform of the original function is:
\[ 7 \cos(\sqrt{17}t) + \frac{3}{\sqrt{17}} \sin(\sqrt{17}t) \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb738ee4b-0d92-438d-b96f-d8d02fb325c0%2Fbc65d296-c0e6-4eca-80e0-0cb2bdd396bf%2F540ezb_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem:**
Find the inverse Laplace transform of
\[ \frac{7s + 3}{s^2 + 17} \]
for \( s > 0 \).
**Solution:**
To find the inverse Laplace transform, we can separate the expression into two fractions:
\[ \frac{7s}{s^2 + 17} + \frac{3}{s^2 + 17} \]
**Step 1: Inverse Transform of \( \frac{7s}{s^2 + 17} \)**
Recognizing the form \(\frac{s}{s^2 + a^2}\), the inverse Laplace transform is a cosine function:
\[ \mathcal{L}^{-1}\left\{ \frac{s}{s^2 + a^2} \right\} = \cos(at) \]
For our case, \( a^2 = 17 \), hence \( a = \sqrt{17} \). So the inverse Laplace transform of \( \frac{7s}{s^2 + 17} \) is:
\[ 7 \cos(\sqrt{17}t) \]
**Step 2: Inverse Transform of \( \frac{3}{s^2 + 17} \)**
Recognizing the form \(\frac{1}{s^2 + a^2}\), the inverse Laplace transform is a sine function:
\[ \mathcal{L}^{-1}\left\{ \frac{1}{s^2 + a^2} \right\} = \frac{1}{a}\sin(at) \]
Therefore, the inverse Laplace transform of \( \frac{3}{s^2 + 17} \) is:
\[ \frac{3}{\sqrt{17}} \sin(\sqrt{17} t) \]
**Final Solution:**
Combining both parts, the inverse Laplace transform of the original function is:
\[ 7 \cos(\sqrt{17}t) + \frac{3}{\sqrt{17}} \sin(\sqrt{17}t) \]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

