During periods of high activity, the Sun has more sunspots than usual. Sunspots are cooler than the rest of the luminous layer of the Sun’s atmosphere (the photosphere). Paradoxically, the total power output of the active Sun is not lower than average but is the same or slightly higher thanaverage. Work out the details of the following crude model of this phenomenon. Consider a patch of the photosphere with an area of 5.10 × 1014 m2. Its emissivity is 0.965. (a) Find the power it radiates if its temperature is uniformly 5 800 K, corresponding to the quiet Sun. (b) To represent a sunspot, assume 10.0% of the patch area is at 4 800 K and the other 90.0% is at 5 890 K. Find the power output of the patch. (c) State how the answer to part (b) compares with the answer to part (a). (d) Find the average temperature of the patch. Note that this cooler temperature results in a higher power output.

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter21: Heat And The First Law Of Thermodynamics
Section: Chapter Questions
Problem 78PQ
icon
Related questions
Question

During periods of high activity, the Sun has more sunspots than usual. Sunspots are cooler than the rest of the luminous layer of the Sun’s atmosphere (the photosphere). Paradoxically, the total power output of the active Sun is not lower than average but is the same or slightly higher than
average. Work out the details of the following crude model of this phenomenon. Consider a patch of the photosphere with an area of 5.10 × 1014 m2. Its emissivity is 0.965. (a) Find the power it radiates if its temperature is uniformly 5 800 K, corresponding to the quiet Sun. (b) To represent a sunspot, assume 10.0% of the patch area is at 4 800 K and the other 90.0% is at 5 890 K. Find the power output of the patch. (c) State how the answer to part (b) compares with the answer to part (a). (d) Find the average temperature of the patch. Note that this cooler temperature results in a higher power output.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
First law of thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning