During an Olympic 100-m sprint race, Usain Bolt, the world record holder in that race, quickly accelerates to his top speed of 12.4 m/s. Analysis of his technique has shown that each of his feet make contact with the ground for 0.0800 s, exerting a force of magnitude 2.80 x 10 N during this contact. This allows the 94.0 kg Bolt to leap forward and remain airborne for 0.120 s until the next foot touches the ground. (Ignore air resistance.) (a) What are the magnitudes of the horizontal and vertical components of the force (in N) Bolt's feet exert on the ground? (Round your answers to at least three significant figures.) horizontal vertical (b) Assuming that the sprinter accelerates at a constant rate while his feet are in contact with the ground and does not slow down when he is airborne, by what amount does Bolt's horizontal speed (in m/s) increase with each step? (Round your answer to at least three significant figures.) m/s (c) Assuming that the sprinter's speed increases at a constant rate by the amount found in part (b) during the 0.0800 s of contact with the ground, and remains constant for the 0.120 s he is in the air, what is the time interval (in s) required for Bolt to reach his top speed?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
During an Olympic 100-m sprint race, Usain Bolt, the world record holder in that race, quickly accelerates to his top speed of 12.4 m/s. Analysis of his technique has shown that each of his feet make
contact with the ground for 0.0800 s, exerting a force of magnitude 2.80 x 10° N during this contact. This allows the 94.0 kg Bolt to leap forward and remain airborne for 0.120 s until the next foot
touches the ground. (Ignore air resistance.)
(a) What are the magnitudes of the horizontal and vertical components of the force (in N) Bolt's feet exert on the ground? (Round your answers to at least three significant figures.)
horizontal
N
vertical
(b) Assuming that the sprinter accelerates at a constant rate while his feet are in contact with the ground and does not slow down when he is airborne, by what amount does Bolt's horizontal speed
(in m/s) increase with each step? (Round your answer to at least three significant figures.)
m/s
(c) Assuming that the sprinter's speed increases at a constant rate by the amount found in part (b) during the 0.0800 s of contact with the ground, and remains constant for the 0.120 s he is in the
air, what is the time interval (in s) required for Bolt to reach his top speed?
Transcribed Image Text:During an Olympic 100-m sprint race, Usain Bolt, the world record holder in that race, quickly accelerates to his top speed of 12.4 m/s. Analysis of his technique has shown that each of his feet make contact with the ground for 0.0800 s, exerting a force of magnitude 2.80 x 10° N during this contact. This allows the 94.0 kg Bolt to leap forward and remain airborne for 0.120 s until the next foot touches the ground. (Ignore air resistance.) (a) What are the magnitudes of the horizontal and vertical components of the force (in N) Bolt's feet exert on the ground? (Round your answers to at least three significant figures.) horizontal N vertical (b) Assuming that the sprinter accelerates at a constant rate while his feet are in contact with the ground and does not slow down when he is airborne, by what amount does Bolt's horizontal speed (in m/s) increase with each step? (Round your answer to at least three significant figures.) m/s (c) Assuming that the sprinter's speed increases at a constant rate by the amount found in part (b) during the 0.0800 s of contact with the ground, and remains constant for the 0.120 s he is in the air, what is the time interval (in s) required for Bolt to reach his top speed?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY