Draw a sketch. Choose the correct graph below. O A. A 2-1.50 -2.25 The probability of getting a reading between 1.50°C and 2.25°C is (Round to four decimal places as needed.) d Normal Table (Page 2) POSTLIVE 750O KOS O B. Z-1.50 Z-2.25 Q - X O C. Standard Normal Table (Page 1) NEGATIVE Z Scores Z-1.50 -2.25 0

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that thermometer readings are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A thermometer is randomly selected and tested. For the case below, draw a sketch, and find the probability of the reading. (The given values are in Celsius
degrees.)
Between 1.50 and 2.25
Click to view page 1 of the table. Click to view page 2 of the table.
Draw a sketch. Choose the correct graph below.
O A.
The probability of getting a reading between 1.50°C and 2.25°C is
(Round to four decimal places as needed.)
d Normal Table (Page 2)
.00
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.5000
5398
5793
.6179
.6554
.6915
7257
.7580
7881
.8159
.8413
8643
.8849
.9032
9192
9332
9452
.9554
.9641
9713
9772
.9821
9861
0007
.01
5040
5438
5832
6217
.6591
z=1.50 z=2.25
6950
7291
.7611
7910
.8186
.8438
8665
8869
9049
9207
9345
9463
.9564
9649
.9719
9778
9826
9864
.02
5080
5478
5871
6255
6628
.6985
7324
7642
7939
.8212
8461
8686
8888
.9066
9222
9357
9474
.9573
9656
9726
9783
.9830
9868
0000
POSITIVE Z Scores
.03
5120
5517
5910
6293
6664
7019
7357
7673
7967
.8238
8485
8708
8907
.9082
9236
9370
9484
.9582
9664
9732
9788
9834
9871
0901
.04
.5160
5557
.5948
.6331
.6700
.7054
7389
.05
.9875
gand
5199
.5596
5987
6368
.6736
.7088
7422
7734
.7704
7995
.8264
8508
.8729
.8925
.9099
.9251
9382
9495 * 9505
.9591
.9599
.9671
.9678
9738
9744
9793
.9838
8023
.8289
.8531
8749
8944
.9115
9265
9394
.9798
.9842
.9878
aane
.06
5239
5636
.6026
.6406
.6772
7123
7454
.7764
.8051
.8315
.8554
.8770
8962
.9131
.9279
.9406
9515
.9608
.9686
.9750
.9803
.9846
.9881
.07
5279
5675
6064
.6443
.6808
7157
7486
.7794
8078
8340
.8577
8790
.8980
.9147
9292
9418
9525
.9616
9693
9756
.9808
.9850
.9884
2011
.08
5319
5714
.6103
6480
6844
.7190
7517
7823
.8106
.8365
.8599
.8810
.8997
.9162
9306
.9429
9535
.9625
.9699
9761
9812
.9854
.9887
0017
.09
5359
5753
6141
.6517
.6879
.7224
7549
7852
.8133
.8389
.8621
.8830
9015
.9177
.9319
.9441
9545
.9633
9706
.9767
.9817
.9857
.9890
0916
O B.
Z=1.50 z=2.25
Q
Q
✔
- X
C
Standard Normal Table (Page 1)
NEGATIVE z Scores
-3.50
and
lower
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-1.9
-1.8
-1.7
-1.5
-1.4
-1.3
-1.2
.00
0001
,0003
.0005
,0007
.0010
.0013
.0019
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.0026
.0035
0047
0062
.0082
.0107
0139
.0179
.0228
0287
0359
0446
0548
.0668
.0808
0968
1151
1357
.01
0003
.0005
0007
.0009
0013
0018
.0025
0034
0045
0060
0080
0104
0136
0174
0222
0281
0351
0436
0537
0655
0793
0951
1131
1335
.02
0003
.0005
.0006
0009
.0013
0018
.0024
.0033
0044
0059
0078
.0102
0132
0170
0217
0274
0344
0427
0526
.0643
0778
0934
1112
1314
.03
0003
.0004
.0006
0009
0012
.0017
.0023
.0032
0043
0057
.0075
.0099
0129
0166
0212
.0268
.0336
0418
O C.
.0516
0630
0764
.0918
1093
1292
.04
0003
0004
0006
.0008
0012
.0016
0023
.0031
0041
0055
0073
0096
0125
0162
.05
.1075
1271
,0003
.0004
,0006
.0008
.0011
.0016
.0022
0030
,0040
.0054
.0071
.0094
.0122
.0158
0207 .0202
.0256
0262
0329
0409
0505
0618
0749
.0901
0322
0401
z=1.50 z=2.25
* .0495
.0606
.0735
.0885
1056
1251
.06
0003
.0004
0006
0008
0011
.0015
.0021
0029
0039
0052
.0069
.0091
0119
0154
0197
0250
0314
0392
0485
0594
0721
0869
1038
1230
0003
.0004
.0005
Q
.0008
,0011
0015
.0021
.0028
0038
.0051
.0068
.0089
0116
.0150
0192
.0244
.0307
0384
.0475
0582
.0708
0853
1020
1210
Q
.08
.0003
.0004
.0005
0007
0010
.0014
.0020
0027
0037
0049
.0066
0087
0113
0146
.0188
0239
.0301
.0375
0465
.0571
0694
0838
1003
1190
.09
0002
.0003
0005
.0007
0010
.0014
.0019
.0026
0036
.0048
.0064
.0084
0110
0143
.0183
0233
0294
0367
0455
.0559
.0681
0823
0985
1170
X
Transcribed Image Text:Assume that thermometer readings are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A thermometer is randomly selected and tested. For the case below, draw a sketch, and find the probability of the reading. (The given values are in Celsius degrees.) Between 1.50 and 2.25 Click to view page 1 of the table. Click to view page 2 of the table. Draw a sketch. Choose the correct graph below. O A. The probability of getting a reading between 1.50°C and 2.25°C is (Round to four decimal places as needed.) d Normal Table (Page 2) .00 Standard Normal (z) Distribution: Cumulative Area from the LEFT .5000 5398 5793 .6179 .6554 .6915 7257 .7580 7881 .8159 .8413 8643 .8849 .9032 9192 9332 9452 .9554 .9641 9713 9772 .9821 9861 0007 .01 5040 5438 5832 6217 .6591 z=1.50 z=2.25 6950 7291 .7611 7910 .8186 .8438 8665 8869 9049 9207 9345 9463 .9564 9649 .9719 9778 9826 9864 .02 5080 5478 5871 6255 6628 .6985 7324 7642 7939 .8212 8461 8686 8888 .9066 9222 9357 9474 .9573 9656 9726 9783 .9830 9868 0000 POSITIVE Z Scores .03 5120 5517 5910 6293 6664 7019 7357 7673 7967 .8238 8485 8708 8907 .9082 9236 9370 9484 .9582 9664 9732 9788 9834 9871 0901 .04 .5160 5557 .5948 .6331 .6700 .7054 7389 .05 .9875 gand 5199 .5596 5987 6368 .6736 .7088 7422 7734 .7704 7995 .8264 8508 .8729 .8925 .9099 .9251 9382 9495 * 9505 .9591 .9599 .9671 .9678 9738 9744 9793 .9838 8023 .8289 .8531 8749 8944 .9115 9265 9394 .9798 .9842 .9878 aane .06 5239 5636 .6026 .6406 .6772 7123 7454 .7764 .8051 .8315 .8554 .8770 8962 .9131 .9279 .9406 9515 .9608 .9686 .9750 .9803 .9846 .9881 .07 5279 5675 6064 .6443 .6808 7157 7486 .7794 8078 8340 .8577 8790 .8980 .9147 9292 9418 9525 .9616 9693 9756 .9808 .9850 .9884 2011 .08 5319 5714 .6103 6480 6844 .7190 7517 7823 .8106 .8365 .8599 .8810 .8997 .9162 9306 .9429 9535 .9625 .9699 9761 9812 .9854 .9887 0017 .09 5359 5753 6141 .6517 .6879 .7224 7549 7852 .8133 .8389 .8621 .8830 9015 .9177 .9319 .9441 9545 .9633 9706 .9767 .9817 .9857 .9890 0916 O B. Z=1.50 z=2.25 Q Q ✔ - X C Standard Normal Table (Page 1) NEGATIVE z Scores -3.50 and lower -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -1.9 -1.8 -1.7 -1.5 -1.4 -1.3 -1.2 .00 0001 ,0003 .0005 ,0007 .0010 .0013 .0019 Standard Normal (z) Distribution: Cumulative Area from the LEFT .0026 .0035 0047 0062 .0082 .0107 0139 .0179 .0228 0287 0359 0446 0548 .0668 .0808 0968 1151 1357 .01 0003 .0005 0007 .0009 0013 0018 .0025 0034 0045 0060 0080 0104 0136 0174 0222 0281 0351 0436 0537 0655 0793 0951 1131 1335 .02 0003 .0005 .0006 0009 .0013 0018 .0024 .0033 0044 0059 0078 .0102 0132 0170 0217 0274 0344 0427 0526 .0643 0778 0934 1112 1314 .03 0003 .0004 .0006 0009 0012 .0017 .0023 .0032 0043 0057 .0075 .0099 0129 0166 0212 .0268 .0336 0418 O C. .0516 0630 0764 .0918 1093 1292 .04 0003 0004 0006 .0008 0012 .0016 0023 .0031 0041 0055 0073 0096 0125 0162 .05 .1075 1271 ,0003 .0004 ,0006 .0008 .0011 .0016 .0022 0030 ,0040 .0054 .0071 .0094 .0122 .0158 0207 .0202 .0256 0262 0329 0409 0505 0618 0749 .0901 0322 0401 z=1.50 z=2.25 * .0495 .0606 .0735 .0885 1056 1251 .06 0003 .0004 0006 0008 0011 .0015 .0021 0029 0039 0052 .0069 .0091 0119 0154 0197 0250 0314 0392 0485 0594 0721 0869 1038 1230 0003 .0004 .0005 Q .0008 ,0011 0015 .0021 .0028 0038 .0051 .0068 .0089 0116 .0150 0192 .0244 .0307 0384 .0475 0582 .0708 0853 1020 1210 Q .08 .0003 .0004 .0005 0007 0010 .0014 .0020 0027 0037 0049 .0066 0087 0113 0146 .0188 0239 .0301 .0375 0465 .0571 0694 0838 1003 1190 .09 0002 .0003 0005 .0007 0010 .0014 .0019 .0026 0036 .0048 .0064 .0084 0110 0143 .0183 0233 0294 0367 0455 .0559 .0681 0823 0985 1170 X
Expert Solution
Step 1

It is given that thermometer readings are normally distributed with mean 0 and standard deviation 1.

steps

Step by step

Solved in 6 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman