Dr. Miriam Johnson has been teaching accounting for over 20 years. From her experience, she knows that 60% of her students do homework regularly. Moreover, 95% of the students who do their homework regularly pass the course. She also knows that 85% of her students pass the course. Let event A be “Do homework regularly” and B be “Pass the course”. a. What is the probability that a student will do homework regularly and also pass the course? (Round your answer to 2 decimal places.) b. What is the probability that a student will neither do homework regularly nor pass the course? (Round your answer to 2 decimal places.) c. Are the events “pass the course” and “do homework regularly” mutually exclusive? multiple choice 1 Yes because P(B | A) = P(B). No because P(B | A) ≠ P(B). Yes because P(A ∩ B) = 0. No because P(A ∩ B) ≠ 0. d. Are the events “pass the course” and “do homework regularly” independent? multiple choice 2 Yes because P(B | A) = P(B). No because P(B | A) ≠ P(B). Yes because P(A ∩ B) = 0. No because P(A ∩ B) ≠ 0.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
Dr. Miriam Johnson has been teaching accounting for over 20 years. From her experience, she knows that 60% of her students do homework regularly. Moreover, 95% of the students who do their homework regularly pass the course. She also knows that 85% of her students pass the course. Let event A be “Do homework regularly” and B be “Pass the course”.

a. What is the probability that a student will do homework regularly and also pass the course? (Round your answer to 2 decimal places.)

 


b. What is the probability that a student will neither do homework regularly nor pass the course? (Round your answer to 2 decimal places.)

 


c. Are the events “pass the course” and “do homework regularly” mutually exclusive?

multiple choice 1
  • Yes because P(B | A) = P(B).
  • No because P(B | A) ≠ P(B).
  • Yes because P(A ∩ B) = 0.
  • No because P(A ∩ B) ≠ 0.


d. Are the events “pass the course” and “do homework regularly” independent?

multiple choice 2
  • Yes because P(B | A) = P(B).
  • No because P(B | A) ≠ P(B).
  • Yes because P(A ∩ B) = 0.
  • No because P(A ∩ B) ≠ 0.
 
 
 
 
 
 
 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON