distributor receives a large shipment of components. The distributor would like to accept the shipment if 10% or fewer of the components are defective and to return it if more than 10% of the components are defective. She decides to sample 10 components, and to return the shipment if more than 1 of the 10 is defective. The distributor decides that she will accept the shipment only if none of the sampled items are defective. What is the minimum number of items she should sample if she wants to have a probability no greater than 0.01 of accepting the shipment if 22% of the components in the shipment are defective? Round the answer to the next largest whole number.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

 

A distributor receives a large shipment of components. The distributor would like to accept the shipment if 10% or fewer of the components are defective and to return it if more than 10% of the components are defective. She decides to sample 10 components, and to return the shipment if more than 1 of the 10 is defective.

The distributor decides that she will accept the shipment only if none of the sampled items are defective. What is the minimum number of items she should sample if she wants to have a probability no greater than 0.01 of accepting the shipment if 22% of the components in the shipment are defective? Round the answer to the next largest whole number.

 

Expert Solution
Step 1

Provided information is, a distributor receives a large shipment of components. The distributor would like to accept the shipment if 10% or fewer of the components are defective and to return it if more than 10% of the components are defective.

The situation follows binomial distribution, the probability mass function of the distribution can be given as:

PX=x=Cxnpx1-pn-x

denoted as X~B(n, p)

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Inequality
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON