Directions: Type your solutions into this document and be sure to show all steps for arriving at your solution. Just giving a final number may not receive full credit. PROBLEM 1 In the following question, the domain of discourse is a set of male patients in a clinical study. Define the following predicates: P(x) : r was given the placebo • D(x): x was given the medication M(x) : a had migraines Translate each of the following statements into a logical expression. Then negate the expression by adding a negation operation to the beginning of the expression. Apply De Morgan's law until each negation operation applies directly to a predicate and then translate the logical expression back into English. Sample question: Some patient was given the placebo and the medication. • 3r (P(r) A D(x)) • Negation: -J (P(x) A D(x)) • Applying De Morgan's law: Vr (¬P(x) V ¬D(x)) English: Every patient was either not given the placebo or not given the medication (or both).
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps