Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
(9) Please show work as necessary.
![**Topic: Calculus - Differentiation**
**Objective: Differentiate the given function.**
The function to differentiate is:
\[ f(x) = \ln\left(\frac{x^6}{8}\right) \]
---
**Solution**
To differentiate, apply the chain rule and logarithmic properties. Start by using the property of logarithms:
\[ \ln\left(\frac{x^6}{8}\right) = \ln(x^6) - \ln(8) \]
Now, differentiate each term:
1. Differentiate \(\ln(x^6)\):
- Use the chain rule: \((\ln(u))' = \frac{1}{u} \cdot u'\),
- Here \(u = x^6\) so \(u' = 6x^5\),
- Thus, \(\frac{d}{dx}[\ln(x^6)] = \frac{1}{x^6} \cdot 6x^5 = \frac{6}{x}\).
2. \(\ln(8)\) is a constant, so its derivative is 0.
The derivative of the function is then:
\[ f'(x) = \frac{6}{x} \]
---
**Result**
\[ f'(x) = \boxed{\frac{6}{x}} \]
Use this result to understand how logarithmic differentiation works and the application of different rules like the chain rule in calculus.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9dc72e72-cadd-4409-82bd-d52418d83748%2F0e1afc77-b415-4ddb-b93c-ff9e0094e0d7%2Fjxyrso_processed.png&w=3840&q=75)
Transcribed Image Text:**Topic: Calculus - Differentiation**
**Objective: Differentiate the given function.**
The function to differentiate is:
\[ f(x) = \ln\left(\frac{x^6}{8}\right) \]
---
**Solution**
To differentiate, apply the chain rule and logarithmic properties. Start by using the property of logarithms:
\[ \ln\left(\frac{x^6}{8}\right) = \ln(x^6) - \ln(8) \]
Now, differentiate each term:
1. Differentiate \(\ln(x^6)\):
- Use the chain rule: \((\ln(u))' = \frac{1}{u} \cdot u'\),
- Here \(u = x^6\) so \(u' = 6x^5\),
- Thus, \(\frac{d}{dx}[\ln(x^6)] = \frac{1}{x^6} \cdot 6x^5 = \frac{6}{x}\).
2. \(\ln(8)\) is a constant, so its derivative is 0.
The derivative of the function is then:
\[ f'(x) = \frac{6}{x} \]
---
**Result**
\[ f'(x) = \boxed{\frac{6}{x}} \]
Use this result to understand how logarithmic differentiation works and the application of different rules like the chain rule in calculus.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Introduce the problem
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning