In Exercises 9-12, solve the lin the b's solve the systems toget Ma ond

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
F1.6 Question 9 on paper
### Linear Systems and Row Echelon Form

In this section, we'll explore solving linear systems by reducing an augmented matrix to its reduced row echelon form. You will practice these skills in the exercises provided.

#### Example
Consider the linear system represented in matrix form:
\[ 
\begin{pmatrix}
1 & 2 & 3 \\
1 & 5 & -5 \\
3 & 5 & 8
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}
\]

**Exercises 7 and 8: Solve the linear systems given.**

7. 
\[
\begin{cases}
3x_1 + 5x_2 = b_1 \\
x_1 + 2x_2 = b_2
\end{cases}
\]

8. 
\[
\begin{cases}
x_1 + 2x_2 + 3x_3 = b_1 \\
2x_1 + 5x_2 - 5x_3 = b_2 \\
3x_1 + 5x_2 + 8x_3 = b_3
\end{cases}
\]

**In Exercises 9-12, solve the linear systems. Using the given values for the \(b\)'s solve the systems together by reducing an appropriate augmented matrix to reduced row echelon form.**

9. 
\[
\begin{cases}
x_1 - 5x_2 = b_1 \\
3x_1 + 2x_2 = b_2
\end{cases}
\]

For part (i) \(b_1 = 1, b_2 = 4\)

For part (ii) \(b_1 = -2, b_2 = 5\)

10. 
\[
\begin{cases}
-x_1 + 4x_2 + x_3 = b_1 \\
x_1 + 9x_2 - 2x_3 = b_2 \\
6x_1 + 4x_2 - 8x_3 = b_3
\end{cases}
\
Transcribed Image Text:### Linear Systems and Row Echelon Form In this section, we'll explore solving linear systems by reducing an augmented matrix to its reduced row echelon form. You will practice these skills in the exercises provided. #### Example Consider the linear system represented in matrix form: \[ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 5 & -5 \\ 3 & 5 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \] **Exercises 7 and 8: Solve the linear systems given.** 7. \[ \begin{cases} 3x_1 + 5x_2 = b_1 \\ x_1 + 2x_2 = b_2 \end{cases} \] 8. \[ \begin{cases} x_1 + 2x_2 + 3x_3 = b_1 \\ 2x_1 + 5x_2 - 5x_3 = b_2 \\ 3x_1 + 5x_2 + 8x_3 = b_3 \end{cases} \] **In Exercises 9-12, solve the linear systems. Using the given values for the \(b\)'s solve the systems together by reducing an appropriate augmented matrix to reduced row echelon form.** 9. \[ \begin{cases} x_1 - 5x_2 = b_1 \\ 3x_1 + 2x_2 = b_2 \end{cases} \] For part (i) \(b_1 = 1, b_2 = 4\) For part (ii) \(b_1 = -2, b_2 = 5\) 10. \[ \begin{cases} -x_1 + 4x_2 + x_3 = b_1 \\ x_1 + 9x_2 - 2x_3 = b_2 \\ 6x_1 + 4x_2 - 8x_3 = b_3 \end{cases} \
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

I need this on paper hand written please I cant underestand like this. Thank you so much

Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,