Determine which set of vectors is orthogonal.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Determine which set of vectors is orthogonal.

- **Option A:** \( \mathbf{v} = (0, -2), \mathbf{w} = \left( 0, \frac{3}{2} \right) \)
  
- **Option B:** \( \mathbf{v} = \left( -\frac{3}{2}, -2 \right), \mathbf{w} = (1, 5) \)
  
- **Option C:** \( \mathbf{v} = \left( -\frac{3}{2}, 0 \right), \mathbf{w} = (1, 0) \)
  
- **Option D:** \( \mathbf{v} = \left( -\frac{3}{2}, 1 \right), \mathbf{w} = \left( 1, \frac{3}{2} \right) \)
  
### Explanation

To determine which set of vectors is orthogonal, we need to check if the dot product of the two vectors in each set equals zero. Two vectors \(\mathbf{v} = (v_1, v_2)\) and \(\mathbf{w} = (w_1, w_2)\) are orthogonal if:

\[ \mathbf{v} \cdot \mathbf{w} = v_1 \cdot w_1 + v_2 \cdot w_2 = 0 \]

Let's analyze each option:

1. **Option A:**
   \[
   \mathbf{v} \cdot \mathbf{w} = 0 \cdot 0 + (-2) \cdot \frac{3}{2} = 0 - 3 = -3 \quad (\text{Not orthogonal})
   \]

2. **Option B:**
   \[
   \mathbf{v} \cdot \mathbf{w} = \left( -\frac{3}{2} \right) \cdot 1 + (-2) \cdot 5 = -\frac{3}{2} - 10 = -\frac{23}{2} \quad (\text{Not orthogonal})
   \]

3. **Option C:**
   \[
   \mathbf{v} \cdot \mathbf{w} = \left( -\frac{3}{2} \right
Transcribed Image Text:### Determine which set of vectors is orthogonal. - **Option A:** \( \mathbf{v} = (0, -2), \mathbf{w} = \left( 0, \frac{3}{2} \right) \) - **Option B:** \( \mathbf{v} = \left( -\frac{3}{2}, -2 \right), \mathbf{w} = (1, 5) \) - **Option C:** \( \mathbf{v} = \left( -\frac{3}{2}, 0 \right), \mathbf{w} = (1, 0) \) - **Option D:** \( \mathbf{v} = \left( -\frac{3}{2}, 1 \right), \mathbf{w} = \left( 1, \frac{3}{2} \right) \) ### Explanation To determine which set of vectors is orthogonal, we need to check if the dot product of the two vectors in each set equals zero. Two vectors \(\mathbf{v} = (v_1, v_2)\) and \(\mathbf{w} = (w_1, w_2)\) are orthogonal if: \[ \mathbf{v} \cdot \mathbf{w} = v_1 \cdot w_1 + v_2 \cdot w_2 = 0 \] Let's analyze each option: 1. **Option A:** \[ \mathbf{v} \cdot \mathbf{w} = 0 \cdot 0 + (-2) \cdot \frac{3}{2} = 0 - 3 = -3 \quad (\text{Not orthogonal}) \] 2. **Option B:** \[ \mathbf{v} \cdot \mathbf{w} = \left( -\frac{3}{2} \right) \cdot 1 + (-2) \cdot 5 = -\frac{3}{2} - 10 = -\frac{23}{2} \quad (\text{Not orthogonal}) \] 3. **Option C:** \[ \mathbf{v} \cdot \mathbf{w} = \left( -\frac{3}{2} \right
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning