12 2 Determine if the pair of vectors v₁ = 3 V₂ = =-3 are orthogonal. -5 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Determine if the pair of vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \) are orthogonal.

Given:

\[ \mathbf{v_1} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix} \]

**Solution:**

Two vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \) are orthogonal if their dot product is zero. The dot product of two vectors \( \mathbf{v_1} = \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} \) and \( \mathbf{v_2} = \begin{bmatrix} v_{21} \\ v_{22} \\ v_{23} \end{bmatrix} \) is given by:

\[ \mathbf{v_1} \cdot \mathbf{v_2} = v_{11}v_{21} + v_{12}v_{22} + v_{13}v_{23} \]

Substituting the given vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \):

\[ \mathbf{v_1} \cdot \mathbf{v_2} = (12)(2) + (3)(-3) + (-5)(3) \]
\[ = 24 - 9 - 15 \]
\[ = 0 \]

Since the dot product \( \mathbf{v_1} \cdot \mathbf{v_2} \) is zero, the vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \) are orthogonal.
Transcribed Image Text:**Problem Statement:** Determine if the pair of vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \) are orthogonal. Given: \[ \mathbf{v_1} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix} \] **Solution:** Two vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \) are orthogonal if their dot product is zero. The dot product of two vectors \( \mathbf{v_1} = \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} \) and \( \mathbf{v_2} = \begin{bmatrix} v_{21} \\ v_{22} \\ v_{23} \end{bmatrix} \) is given by: \[ \mathbf{v_1} \cdot \mathbf{v_2} = v_{11}v_{21} + v_{12}v_{22} + v_{13}v_{23} \] Substituting the given vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \): \[ \mathbf{v_1} \cdot \mathbf{v_2} = (12)(2) + (3)(-3) + (-5)(3) \] \[ = 24 - 9 - 15 \] \[ = 0 \] Since the dot product \( \mathbf{v_1} \cdot \mathbf{v_2} \) is zero, the vectors \( \mathbf{v_1} \) and \( \mathbf{v_2} \) are orthogonal.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,