Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Matrix Invertibility**
---
**Problem Statement:**
Determine whether the matrix is invertible.
\[
\begin{pmatrix}
9 & 5 & -9 \\
4 & 2 & -4 \\
-3 & 0 & 3
\end{pmatrix}
\]
To determine whether the given matrix is invertible, we need to check if its determinant is non-zero. If the determinant is non-zero, the matrix is invertible; otherwise, it is not.
To find the determinant of a 3x3 matrix \(\mathbf{A}\) given as:
\[
\mathbf{A} = \begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{pmatrix}
\]
The determinant (\(\det(\mathbf{A})\)) is calculated as follows:
\[
\det(\mathbf{A}) = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
For the given matrix:
\[
\mathbf{A} = \begin{pmatrix}
9 & 5 & -9 \\
4 & 2 & -4 \\
-3 & 0 & 3 \\
\end{pmatrix}
\]
Let \(a = 9\), \(b = 5\), \(c = -9\), \(d = 4\), \(e = 2\), \(f = -4\), \(g = -3\), \(h = 0\), \(i = 3\).
Plug these values into the determinant formula:
\[
\det(\mathbf{A}) = 9(2*3 - (-4)*0) - 5(4*3 - (-3)*(-4)) + (-9)(4*0 - (-3)*2)
\]
Simplifying each term:
\[
= 9(6 - 0) - 5(12 - 12) - 9(0 + 6)
\]
\[
= 9 \cdot 6 - 5 \cdot 0 - 9 \cdot 6
\]
\[
= 54 - 0 - 54
\]
\[
= 0
\]
Since \(\det(\mathbf{A}) = 0\), the matrix is **not**](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2e51c4f9-7707-4851-92b0-3f7eb5342ba2%2F77c2dbfc-5f6d-4eaa-bbe0-c60ec0bd2b47%2Fqw8eqm_processed.png&w=3840&q=75)
Transcribed Image Text:**Matrix Invertibility**
---
**Problem Statement:**
Determine whether the matrix is invertible.
\[
\begin{pmatrix}
9 & 5 & -9 \\
4 & 2 & -4 \\
-3 & 0 & 3
\end{pmatrix}
\]
To determine whether the given matrix is invertible, we need to check if its determinant is non-zero. If the determinant is non-zero, the matrix is invertible; otherwise, it is not.
To find the determinant of a 3x3 matrix \(\mathbf{A}\) given as:
\[
\mathbf{A} = \begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{pmatrix}
\]
The determinant (\(\det(\mathbf{A})\)) is calculated as follows:
\[
\det(\mathbf{A}) = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
For the given matrix:
\[
\mathbf{A} = \begin{pmatrix}
9 & 5 & -9 \\
4 & 2 & -4 \\
-3 & 0 & 3 \\
\end{pmatrix}
\]
Let \(a = 9\), \(b = 5\), \(c = -9\), \(d = 4\), \(e = 2\), \(f = -4\), \(g = -3\), \(h = 0\), \(i = 3\).
Plug these values into the determinant formula:
\[
\det(\mathbf{A}) = 9(2*3 - (-4)*0) - 5(4*3 - (-3)*(-4)) + (-9)(4*0 - (-3)*2)
\]
Simplifying each term:
\[
= 9(6 - 0) - 5(12 - 12) - 9(0 + 6)
\]
\[
= 9 \cdot 6 - 5 \cdot 0 - 9 \cdot 6
\]
\[
= 54 - 0 - 54
\]
\[
= 0
\]
Since \(\det(\mathbf{A}) = 0\), the matrix is **not**
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education