1 Perform the row operation R₁R₁ on the matrix below. - -4 6-8 - 4 5 3 4 6 2 [::::)-1888 -4 5 3 (Simplify your answer.)

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

12,13

**Perform the Row Operation on the Given Matrix**

**Objective:**
Perform the row operation \( \frac{1}{2}R_1 \rightarrow R_1 \) on the matrix below.

**Given Matrix:**
\[ 
\begin{bmatrix}
-4 & 6 & \mid & -8 \\
-4 & 5 & \mid & 3 \\
\end{bmatrix}
\]

**Operation:**
\[ \frac{1}{2}R_1 \rightarrow R_1 \]

This means the first row \( R_1 \) of the matrix will be multiplied by \( \frac{1}{2} \).

**Step-by-Step Solution:**

1. **Multiply Each Element in \( R_1 \) by \( \frac{1}{2} \):**

- First element: \( -4 \times \frac{1}{2} = -2 \)
- Second element: \( 6 \times \frac{1}{2} = 3 \)
- Third element (after the vertical line): \( -8 \times \frac{1}{2} = -4 \)

2. **Form the New Matrix:**

\[ 
\begin{bmatrix}
-2 & 3 & \mid & -4 \\
-4 & 5 & \mid & 3 \\
\end{bmatrix}
\]

**Simplified Answer:**
\[ 
\begin{bmatrix}
-2 & 3 & \mid & -4 \\
-4 & 5 & \mid & 3 \\
\end{bmatrix}
\]

This completes the row operation on the given matrix.
Transcribed Image Text:**Perform the Row Operation on the Given Matrix** **Objective:** Perform the row operation \( \frac{1}{2}R_1 \rightarrow R_1 \) on the matrix below. **Given Matrix:** \[ \begin{bmatrix} -4 & 6 & \mid & -8 \\ -4 & 5 & \mid & 3 \\ \end{bmatrix} \] **Operation:** \[ \frac{1}{2}R_1 \rightarrow R_1 \] This means the first row \( R_1 \) of the matrix will be multiplied by \( \frac{1}{2} \). **Step-by-Step Solution:** 1. **Multiply Each Element in \( R_1 \) by \( \frac{1}{2} \):** - First element: \( -4 \times \frac{1}{2} = -2 \) - Second element: \( 6 \times \frac{1}{2} = 3 \) - Third element (after the vertical line): \( -8 \times \frac{1}{2} = -4 \) 2. **Form the New Matrix:** \[ \begin{bmatrix} -2 & 3 & \mid & -4 \\ -4 & 5 & \mid & 3 \\ \end{bmatrix} \] **Simplified Answer:** \[ \begin{bmatrix} -2 & 3 & \mid & -4 \\ -4 & 5 & \mid & 3 \\ \end{bmatrix} \] This completes the row operation on the given matrix.
### Matrix Row Operation Example

**Problem Statement:**
Perform the row operation \( R_1 + R_2 \rightarrow R_1 \) on the matrix below.

\[
\begin{bmatrix}
4 & -6 & 7 \\
3 & -5 & 2 
\end{bmatrix}
\]

**Application of the Row Operation:**

\[
\begin{bmatrix}
4 & -6 & 7 \\
3 & -5 & 2 
\end{bmatrix}
\begin{array}{c}
R_1 + R_2 \rightarrow R_1
\end{array}
\sim
\begin{bmatrix}
[ \boxed{} & \boxed{} & \boxed{} ] \\
[ 3 & -5 & 2 ]
\end{bmatrix}
\]

**Instructions:**

Simplify your answer by calculating the new entries in the first row after applying the row operation \( R_1 + R_2 \rightarrow R_1 \). Replace the boxed placeholders with the calculated values.

**Detailed Steps:**

1. Add the corresponding elements of \( R_1 \) and \( R_2 \):

   - First element: \( 4 + 3 = 7 \)
   - Second element: \( -6 + (-5) = -11 \)
   - Third element: \( 7 + 2 = 9 \)

2. Update the first row with the new values:

   \[
   \begin{bmatrix}
   [ 7 & -11 & 9 ] \\
   [ 3 & -5 & 2 ]
   \end{bmatrix}
   \]

The final matrix after performing the row operation \( R_1 + R_2 \rightarrow R_1 \) is:

\[
\begin{bmatrix}
7 & -11 & 9 \\
3 & -5 & 2 
\end{bmatrix}
\]

**Summary:**

Applying the row operation helps in simplifying matrices for further mathematical operations, especially in solving systems of linear equations using methods like Gaussian elimination.
Transcribed Image Text:### Matrix Row Operation Example **Problem Statement:** Perform the row operation \( R_1 + R_2 \rightarrow R_1 \) on the matrix below. \[ \begin{bmatrix} 4 & -6 & 7 \\ 3 & -5 & 2 \end{bmatrix} \] **Application of the Row Operation:** \[ \begin{bmatrix} 4 & -6 & 7 \\ 3 & -5 & 2 \end{bmatrix} \begin{array}{c} R_1 + R_2 \rightarrow R_1 \end{array} \sim \begin{bmatrix} [ \boxed{} & \boxed{} & \boxed{} ] \\ [ 3 & -5 & 2 ] \end{bmatrix} \] **Instructions:** Simplify your answer by calculating the new entries in the first row after applying the row operation \( R_1 + R_2 \rightarrow R_1 \). Replace the boxed placeholders with the calculated values. **Detailed Steps:** 1. Add the corresponding elements of \( R_1 \) and \( R_2 \): - First element: \( 4 + 3 = 7 \) - Second element: \( -6 + (-5) = -11 \) - Third element: \( 7 + 2 = 9 \) 2. Update the first row with the new values: \[ \begin{bmatrix} [ 7 & -11 & 9 ] \\ [ 3 & -5 & 2 ] \end{bmatrix} \] The final matrix after performing the row operation \( R_1 + R_2 \rightarrow R_1 \) is: \[ \begin{bmatrix} 7 & -11 & 9 \\ 3 & -5 & 2 \end{bmatrix} \] **Summary:** Applying the row operation helps in simplifying matrices for further mathematical operations, especially in solving systems of linear equations using methods like Gaussian elimination.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education