Determine t'(x) if t(x) = 7(3*). Select the correct answer below: O t'(x) = 7(3³) O t'(x) = 3' ln x O t'(x) = 3 (3ln 7) O t'(x) = 3 (7ln 3) O t'(x) = (7x)3x-1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Differentiation Problem: Finding the Derivative**

**Question:**
Determine \( t'(x) \) if \( t(x) = 7(3^x) \).

**Answer Choices:**
Select the correct answer below:
- \( \circ \quad t'(x) = 7(3^x) \)
- \( \circ \quad t'(x) = 3^x \ln x \)
- \( \circ \quad t'(x) = 3^x (3 \ln 7) \)
- \( \circ \quad t'(x) = 3^x (7 \ln 3) \)
- \( \circ \quad t'(x) = (7x)3^{x-1} \)

**Answer Explanation:**
To find the correct derivative \( t'(x) \), apply the chain rule and the formula for the derivative of the exponential function \( a^{x} \).

The differentiation of \( t(x) = 7(3^x) \) results in:
\[ t'(x) = 7 \cdot \frac{d}{dx}(3^x) \]
Using the exponential differentiation rule \( \frac{d}{dx}(a^x) = a^x \ln a \), we get:
\[ t'(x) = 7 \cdot 3^x \ln 3 \]

Therefore, the correct answer is:
\[ \boxed{t'(x) = 7 \cdot 3^x \ln 3} \]
So, select the answer choice with the same expression as derived above. The selection above suggests that the correct answer is:
\[ t'(x) = 3^x (7 \ln 3) \]
Transcribed Image Text:**Differentiation Problem: Finding the Derivative** **Question:** Determine \( t'(x) \) if \( t(x) = 7(3^x) \). **Answer Choices:** Select the correct answer below: - \( \circ \quad t'(x) = 7(3^x) \) - \( \circ \quad t'(x) = 3^x \ln x \) - \( \circ \quad t'(x) = 3^x (3 \ln 7) \) - \( \circ \quad t'(x) = 3^x (7 \ln 3) \) - \( \circ \quad t'(x) = (7x)3^{x-1} \) **Answer Explanation:** To find the correct derivative \( t'(x) \), apply the chain rule and the formula for the derivative of the exponential function \( a^{x} \). The differentiation of \( t(x) = 7(3^x) \) results in: \[ t'(x) = 7 \cdot \frac{d}{dx}(3^x) \] Using the exponential differentiation rule \( \frac{d}{dx}(a^x) = a^x \ln a \), we get: \[ t'(x) = 7 \cdot 3^x \ln 3 \] Therefore, the correct answer is: \[ \boxed{t'(x) = 7 \cdot 3^x \ln 3} \] So, select the answer choice with the same expression as derived above. The selection above suggests that the correct answer is: \[ t'(x) = 3^x (7 \ln 3) \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning