ƒ ƒ(x) = 2√x ln(x), find ƒ'(x). Find f'(1).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

If \( f(x) = 2\sqrt{x} \ln(x) \), find \( f'(x) \).

---

**Solution Steps:**

1. **Identify and Apply the Product Rule:**
   - The function \( f(x) = 2\sqrt{x} \ln(x) \) is a product of two functions: \( u(x) = 2\sqrt{x} \) and \( v(x) = \ln(x) \).
   - Use the product rule: \( (uv)' = u'v + uv' \).

2. **Find Derivatives:**
   - \( u(x) = 2\sqrt{x} = 2x^{1/2} \)
     - \( u'(x) = \frac{d}{dx}[2x^{1/2}] = x^{-1/2} = \frac{1}{\sqrt{x}} \).
   - \( v(x) = \ln(x) \)
     - \( v'(x) = \frac{1}{x} \).

3. **Apply the Product Rule:**
   - \( f'(x) = u'(x) v(x) + u(x) v'(x) \)
   - \( f'(x) = \left(\frac{1}{\sqrt{x}}\right) \ln(x) + \left(2\sqrt{x}\right) \frac{1}{x} \).

4. **Simplify:**
   - \( f'(x) = \frac{\ln(x)}{\sqrt{x}} + \frac{2}{\sqrt{x}} \)
   - \( f'(x) = \frac{\ln(x) + 2}{\sqrt{x}} \).

---

**Final Expression:**

\[ f'(x) = \frac{\ln(x) + 2}{\sqrt{x}} \]

---

**Evaluate \( f'(1) \):**

- Substitute \( x = 1 \) into \( f'(x) \):
  - \( f'(1) = \frac{\ln(1) + 2}{\sqrt{1}} \).
  - Since \( \ln(1) = 0 \), \( f'(1) = \frac{0 + 2}{1} = 2 \).

---

**Result:**

\[ f'(1) = 2 \]
Transcribed Image Text:**Problem Statement:** If \( f(x) = 2\sqrt{x} \ln(x) \), find \( f'(x) \). --- **Solution Steps:** 1. **Identify and Apply the Product Rule:** - The function \( f(x) = 2\sqrt{x} \ln(x) \) is a product of two functions: \( u(x) = 2\sqrt{x} \) and \( v(x) = \ln(x) \). - Use the product rule: \( (uv)' = u'v + uv' \). 2. **Find Derivatives:** - \( u(x) = 2\sqrt{x} = 2x^{1/2} \) - \( u'(x) = \frac{d}{dx}[2x^{1/2}] = x^{-1/2} = \frac{1}{\sqrt{x}} \). - \( v(x) = \ln(x) \) - \( v'(x) = \frac{1}{x} \). 3. **Apply the Product Rule:** - \( f'(x) = u'(x) v(x) + u(x) v'(x) \) - \( f'(x) = \left(\frac{1}{\sqrt{x}}\right) \ln(x) + \left(2\sqrt{x}\right) \frac{1}{x} \). 4. **Simplify:** - \( f'(x) = \frac{\ln(x)}{\sqrt{x}} + \frac{2}{\sqrt{x}} \) - \( f'(x) = \frac{\ln(x) + 2}{\sqrt{x}} \). --- **Final Expression:** \[ f'(x) = \frac{\ln(x) + 2}{\sqrt{x}} \] --- **Evaluate \( f'(1) \):** - Substitute \( x = 1 \) into \( f'(x) \): - \( f'(1) = \frac{\ln(1) + 2}{\sqrt{1}} \). - Since \( \ln(1) = 0 \), \( f'(1) = \frac{0 + 2}{1} = 2 \). --- **Result:** \[ f'(1) = 2 \]
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning