Determine the voltage drop across R2 and R3 in the circuit shown. Take the values to be: E = 24 V, R1 = 500 N, R2 = 200N and R3 = 400 N. (а) 5.1 V R, (b) 12 V E (c) 18.9 V R, R, (d) 24 V

icon
Related questions
Question
100%
**Problem Statement:**

Determine the voltage drop across \( R_2 \) and \( R_3 \) in the circuit shown. Take the values to be:
\[ E = 24 \, V, \, R_1 = 500 \, \Omega, \, R_2 = 200 \, \Omega \, \text{and} \, R_3 = 400 \, \Omega.\]

**Options:**

(a) 5.1 V  
(b) 12 V  
(c) 18.9 V  
(d) 24 V

**Circuit Diagram Explanation:**

The circuit diagram consists of a series-parallel combination:
- \( E \) represents a 24 V voltage source.
- \( R_1 \), \( R_2 \), and \( R_3 \) are resistors with values 500 Ω, 200 Ω, and 400 Ω respectively.
- \( R_1 \) is in series with the parallel combination of \( R_2 \) and \( R_3 \).

### Steps to Determine the Voltage Drop

1. **Find Equivalent Resistance of the Parallel Combination:**

\[ R_{23} = \left( \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} = \left( \frac{1}{200} + \frac{1}{400} \right)^{-1} = \left( \frac{1}{200} + \frac{1}{400} \right)^{-1} = \left( \frac{3}{400} \right)^{-1} = \frac{400}{3} \, \Omega \approx 133.33 \, \Omega. \]

2. **Find Total Resistance in the Circuit:**

\[ R_{total} = R_1 + R_{23} = 500 \, \Omega + 133.33 \, \Omega = 633.33 \, \Omega. \]

3. **Find Total Current (I) using Ohm's Law:**

\[ I = \frac{E}{R_{total}} = \frac{24 \, V}{633.33 \, \Omega} \approx 0.0379 \, A. \]

4. **Voltage Drop across the Parallel Combination (V_{23}):**

\[ V_{23} = I \times
Transcribed Image Text:**Problem Statement:** Determine the voltage drop across \( R_2 \) and \( R_3 \) in the circuit shown. Take the values to be: \[ E = 24 \, V, \, R_1 = 500 \, \Omega, \, R_2 = 200 \, \Omega \, \text{and} \, R_3 = 400 \, \Omega.\] **Options:** (a) 5.1 V (b) 12 V (c) 18.9 V (d) 24 V **Circuit Diagram Explanation:** The circuit diagram consists of a series-parallel combination: - \( E \) represents a 24 V voltage source. - \( R_1 \), \( R_2 \), and \( R_3 \) are resistors with values 500 Ω, 200 Ω, and 400 Ω respectively. - \( R_1 \) is in series with the parallel combination of \( R_2 \) and \( R_3 \). ### Steps to Determine the Voltage Drop 1. **Find Equivalent Resistance of the Parallel Combination:** \[ R_{23} = \left( \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} = \left( \frac{1}{200} + \frac{1}{400} \right)^{-1} = \left( \frac{1}{200} + \frac{1}{400} \right)^{-1} = \left( \frac{3}{400} \right)^{-1} = \frac{400}{3} \, \Omega \approx 133.33 \, \Omega. \] 2. **Find Total Resistance in the Circuit:** \[ R_{total} = R_1 + R_{23} = 500 \, \Omega + 133.33 \, \Omega = 633.33 \, \Omega. \] 3. **Find Total Current (I) using Ohm's Law:** \[ I = \frac{E}{R_{total}} = \frac{24 \, V}{633.33 \, \Omega} \approx 0.0379 \, A. \] 4. **Voltage Drop across the Parallel Combination (V_{23}):** \[ V_{23} = I \times
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions