Determine the actual bending stress about the x- axis. 99.12 MPa a. с. 93.75 MPa b. 96.06 MPa d. 104. 72 MPa Find the actual bending stress about the y – axis. a. b. c. d. 66.48 MPa 85.60 MPa 42.80 MPa 33.24 MPa Compute the value of the interaction equation. a. b. 0.87 0.94 0.60 c. d. 0.66
Determine the actual bending stress about the x- axis. 99.12 MPa a. с. 93.75 MPa b. 96.06 MPa d. 104. 72 MPa Find the actual bending stress about the y – axis. a. b. c. d. 66.48 MPa 85.60 MPa 42.80 MPa 33.24 MPa Compute the value of the interaction equation. a. b. 0.87 0.94 0.60 c. d. 0.66
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
![STEEL DESIGN
Situation 1:
Situation 3:
A light crane rail sits on and is securely fastened
to a W crane girder. The girder is simply supported
on a span of 6 m. The crane wheel loads are as
follows: V = 80 kN and H = 8 kN. Assume full transfer
of lateral load to the top flange of the girder.
An 8-m long steel column is pinned at the top and
fixed at the bottom. The column is provided with
lateral support at mid-height in the weak
direction.
Properties:
Ix = 178.1 x 10 mm4
Girder properties:
ly = 18.8 x 106 mm4
A = 8129 mm²2
Weight = 67 kg/m
Sx = 1, 280 x 10³ mm3
Sy = 361 x 103 mm3
7.
Determine the critical slenderness ratio.
a.
38
c.
27
Allowable stresses:
b.
83
d.
41
Fbx = 164 MPa
Find the critical buckling load.
9270 kN
Fby = 186 MPa
8.
2190 kN
2310 kN
a.
с.
Determine the actual bending stress
about the x- axis.
1.
b.
4730 kN
d.
Compute the minimum length of the column for which the
Euler's formula is valid if the proportional limit of the steel
used is 320 MPa.
a.
99.12 MPa
С.
93.75 MPa
9.
b.
96.06 MPa
d.
104. 72 MPа
2.
Find the actual bending stress about the y - axis.
7.5 m
C.
d.
a.
10.7 m
a.
66.48 MPа
C.
85.60 MPa
b.
15.1 m
11.8 m
b.
42.80 MPa
d.
33.24 MPa
Compute the value of the interaction equation.
0.87
An angle bar having a long legs of 160 mm, short
legs of 120 mm and thickness of 40 mm is used a
column.
3.
Situation 4:
а.
0.94
с.
b.
0.60
d.
0.66
10.
Determine the minimum moment of inertia.
COMPRESSION MEMBERS
a.
21.76 x 106 mm4
с.
6.4 x 106 mm4
b.
10.24 x 106 mm
d.
25.6 x 106 mm
505.3 ALLOWABLE STRESS FOR AXIALLY LOADED COMPRESSION
MEMBERS
1.
Find the maximum moment of inertia.
21.76 x 106 mm4
6.4 x 106 mm4
C.
d.
a.
10.24 x 106 mm
505.3.1 On the gross section of axially loaded compression members,
when Kl/r, the largest effective slenderness ratio of any unbraced
segment is less than Ce, the allowable stress is:
b.
25.6 x 106 mm
12.
Compute the maximum product of inertia.
- 222.82 x 10 mm4
- 2.13 x 106 mm4
- 7.68 x 106 mm
- 9.6 x 106 mm
a.
с.
(KI/r)²'
b.
d.
20c
Fa =
(505-1)
Solve the critical slenderness ratio if it is pin at the top and
fixed at the bottom. Assume length of the angle bar as 5
meters.
13.
5. 3 KI/r (KI/r)3
38 Cc
80
96.82
67.78
a.
135.55
where:
b.
d.
48.41
2n E
C.
(505-1a)
Fy
505.3.2 On the gross section of axially loaded compression members,
when Kl/r exceeds Ce, the allowable stress is:
127²E
Fa
(505-2)
23 (кI/r)2
Situation 2:
Two channels are welded at the tip of the flanges
to form a box column.
Properties of each channel:
A = 5,350 mm2
d = 250 mm
br = 100 mm
tw = 10 mm
tr = 15 mm
Ix = 5.2 x 107 mm
ly = 0.5 x 107 mm
Column height = 4 m
Effective length factor, k =1, both axes
Distance from the centroidal y-axis of the channel to the
outer face of the web, x = 29 mm
The major x-axis of the channels is the x-axis of the built-up
column.
Calculate the axial compressive stress in the column due to
a concentric load of 900 kN.
4.
a.
336 MPа
с.
84 MPa
b.
42 MPа
d.
168 MPа
Solve the maximum bending stress in the column due to a
moment of 270 kN-m about the x-axis.
5.
a.
324.5 MPa
с.
649.0 MPa
b.
81.1 MPa
d.
162.2 MPa
Compute the critical slenderness ratio of the built-up column
a.
51.7
c.
40.6
b.
77.3
d.
81.1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6daae76f-b3a1-48a0-a906-f9db98748246%2Feee59d45-1c13-4db2-9b15-d104cb40573e%2Fsymuo3e_processed.png&w=3840&q=75)
Transcribed Image Text:STEEL DESIGN
Situation 1:
Situation 3:
A light crane rail sits on and is securely fastened
to a W crane girder. The girder is simply supported
on a span of 6 m. The crane wheel loads are as
follows: V = 80 kN and H = 8 kN. Assume full transfer
of lateral load to the top flange of the girder.
An 8-m long steel column is pinned at the top and
fixed at the bottom. The column is provided with
lateral support at mid-height in the weak
direction.
Properties:
Ix = 178.1 x 10 mm4
Girder properties:
ly = 18.8 x 106 mm4
A = 8129 mm²2
Weight = 67 kg/m
Sx = 1, 280 x 10³ mm3
Sy = 361 x 103 mm3
7.
Determine the critical slenderness ratio.
a.
38
c.
27
Allowable stresses:
b.
83
d.
41
Fbx = 164 MPa
Find the critical buckling load.
9270 kN
Fby = 186 MPa
8.
2190 kN
2310 kN
a.
с.
Determine the actual bending stress
about the x- axis.
1.
b.
4730 kN
d.
Compute the minimum length of the column for which the
Euler's formula is valid if the proportional limit of the steel
used is 320 MPa.
a.
99.12 MPa
С.
93.75 MPa
9.
b.
96.06 MPa
d.
104. 72 MPа
2.
Find the actual bending stress about the y - axis.
7.5 m
C.
d.
a.
10.7 m
a.
66.48 MPа
C.
85.60 MPa
b.
15.1 m
11.8 m
b.
42.80 MPa
d.
33.24 MPa
Compute the value of the interaction equation.
0.87
An angle bar having a long legs of 160 mm, short
legs of 120 mm and thickness of 40 mm is used a
column.
3.
Situation 4:
а.
0.94
с.
b.
0.60
d.
0.66
10.
Determine the minimum moment of inertia.
COMPRESSION MEMBERS
a.
21.76 x 106 mm4
с.
6.4 x 106 mm4
b.
10.24 x 106 mm
d.
25.6 x 106 mm
505.3 ALLOWABLE STRESS FOR AXIALLY LOADED COMPRESSION
MEMBERS
1.
Find the maximum moment of inertia.
21.76 x 106 mm4
6.4 x 106 mm4
C.
d.
a.
10.24 x 106 mm
505.3.1 On the gross section of axially loaded compression members,
when Kl/r, the largest effective slenderness ratio of any unbraced
segment is less than Ce, the allowable stress is:
b.
25.6 x 106 mm
12.
Compute the maximum product of inertia.
- 222.82 x 10 mm4
- 2.13 x 106 mm4
- 7.68 x 106 mm
- 9.6 x 106 mm
a.
с.
(KI/r)²'
b.
d.
20c
Fa =
(505-1)
Solve the critical slenderness ratio if it is pin at the top and
fixed at the bottom. Assume length of the angle bar as 5
meters.
13.
5. 3 KI/r (KI/r)3
38 Cc
80
96.82
67.78
a.
135.55
where:
b.
d.
48.41
2n E
C.
(505-1a)
Fy
505.3.2 On the gross section of axially loaded compression members,
when Kl/r exceeds Ce, the allowable stress is:
127²E
Fa
(505-2)
23 (кI/r)2
Situation 2:
Two channels are welded at the tip of the flanges
to form a box column.
Properties of each channel:
A = 5,350 mm2
d = 250 mm
br = 100 mm
tw = 10 mm
tr = 15 mm
Ix = 5.2 x 107 mm
ly = 0.5 x 107 mm
Column height = 4 m
Effective length factor, k =1, both axes
Distance from the centroidal y-axis of the channel to the
outer face of the web, x = 29 mm
The major x-axis of the channels is the x-axis of the built-up
column.
Calculate the axial compressive stress in the column due to
a concentric load of 900 kN.
4.
a.
336 MPа
с.
84 MPa
b.
42 MPа
d.
168 MPа
Solve the maximum bending stress in the column due to a
moment of 270 kN-m about the x-axis.
5.
a.
324.5 MPa
с.
649.0 MPa
b.
81.1 MPa
d.
162.2 MPa
Compute the critical slenderness ratio of the built-up column
a.
51.7
c.
40.6
b.
77.3
d.
81.1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning