DESIGN DESCRIPTION To construct a warehouse, the frame system shown in Figure 1 has been adopted. As an engineer, your task is to analyse the mid frame, highlighted in RED. Column 3 Column 1 Beam 1 Columb 2 Slab 1 Beam 1 Slab 2 Beam 2 Beam 3 Column 2 5 m 5 m 5 m Column 3 Column 1 8 m (a) Transfer of self-weight of Slabs 1 and 2 to surrounding beams (simplified case) Beam 1 Figure 1 A warehouse frame system The detailed information of the structural components is provided as follows: Slabs 1 and 2 are made of in-situ cast reinforced concrete and have a thickness of 150 mm (Figure 2). For simplicity, we assume that half the weight of each slab is transferred to Beam 1 (as shown in Figure 2). In addition, a water tank full of water with a weight of 1042 kg (1000 L of water plus weight of the tank) will be installed in the middle of Beam 1 (Figure 2). All the beams are made of reinforced concrete and have a standard size of 225 mm x 600 mm. Note that the density of reinforced concrete is 2500 kg/m³. Half of slab 1 Half of slab 2 (b) Transfer of self-weight of Slabs 1 and 2 to Beam 1 Figure 2 Load transfer from slabs to beams in the warehouse frame system A Beam 1 8 m 600 mm 5 m 125 mm 225 mm Beam cross section Column cross section C Column 1 D Column 2 Figure 3 The middle frame Consider that Column 1 will experience the vertical reaction force at the left end of Beam 1. It will also receive concentrated loads from Beams 2 and 3, amounting to a total of 118 kN. Determine the maximum compressive stress, the deflection of the column and the buckling behaviour of Column 1. Note that Column 1 has dimensions of 125 mm ×125 mm and a modulus of elasticity of 13 GPa, and is fixed at the bottom. Please also note that the self-weight of Column 1 is ignored.
DESIGN DESCRIPTION To construct a warehouse, the frame system shown in Figure 1 has been adopted. As an engineer, your task is to analyse the mid frame, highlighted in RED. Column 3 Column 1 Beam 1 Columb 2 Slab 1 Beam 1 Slab 2 Beam 2 Beam 3 Column 2 5 m 5 m 5 m Column 3 Column 1 8 m (a) Transfer of self-weight of Slabs 1 and 2 to surrounding beams (simplified case) Beam 1 Figure 1 A warehouse frame system The detailed information of the structural components is provided as follows: Slabs 1 and 2 are made of in-situ cast reinforced concrete and have a thickness of 150 mm (Figure 2). For simplicity, we assume that half the weight of each slab is transferred to Beam 1 (as shown in Figure 2). In addition, a water tank full of water with a weight of 1042 kg (1000 L of water plus weight of the tank) will be installed in the middle of Beam 1 (Figure 2). All the beams are made of reinforced concrete and have a standard size of 225 mm x 600 mm. Note that the density of reinforced concrete is 2500 kg/m³. Half of slab 1 Half of slab 2 (b) Transfer of self-weight of Slabs 1 and 2 to Beam 1 Figure 2 Load transfer from slabs to beams in the warehouse frame system A Beam 1 8 m 600 mm 5 m 125 mm 225 mm Beam cross section Column cross section C Column 1 D Column 2 Figure 3 The middle frame Consider that Column 1 will experience the vertical reaction force at the left end of Beam 1. It will also receive concentrated loads from Beams 2 and 3, amounting to a total of 118 kN. Determine the maximum compressive stress, the deflection of the column and the buckling behaviour of Column 1. Note that Column 1 has dimensions of 125 mm ×125 mm and a modulus of elasticity of 13 GPa, and is fixed at the bottom. Please also note that the self-weight of Column 1 is ignored.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
100%
Consider that Column 1 will experience the vertical reaction force at the left end of Beam 1. It will also receive concentrated loads from Beams 2 and 3, amounting to a total of 118 kN. Determine the maximum compressive stress, the deflection of the column and the buckling behaviour of Column 1. Note that Column 1 has dimensions of 125 mm ×125 mm and a modulus of elasticity of 13 GPa, and is fixed at the bottom. Please also note that the self-weight of Column 1 is ignored.

Transcribed Image Text:DESIGN DESCRIPTION
To construct a warehouse, the frame system shown in Figure 1 has been
adopted. As an engineer, your task is to analyse the mid frame, highlighted in
RED.
Column 3
Column 1
Beam 1
Columb 2
Slab 1
Beam 1
Slab 2
Beam 2
Beam 3
Column 2
5 m
5 m
5 m
Column 3
Column 1
8 m
(a) Transfer of self-weight of Slabs 1 and 2 to surrounding beams (simplified
case)
Beam 1
Figure 1 A warehouse frame system
The detailed information of the structural components is provided as follows:
Slabs 1 and 2 are made of in-situ cast reinforced concrete and have a thickness
of 150 mm (Figure 2). For simplicity, we assume that half the weight of each slab
is transferred to Beam 1 (as shown in Figure 2). In addition, a water tank full of
water with a weight of 1042 kg (1000 L of water plus weight of the tank) will be
installed in the middle of Beam 1 (Figure 2). All the beams are made of reinforced
concrete and have a standard size of 225 mm x 600 mm. Note that the density of
reinforced concrete is 2500 kg/m³.
Half of slab 1
Half of slab 2
(b) Transfer of self-weight of Slabs 1 and 2 to Beam 1
Figure 2 Load transfer from slabs to beams in the warehouse frame system
A
Beam 1
8 m
600 mm
5 m
125 mm
225 mm
Beam cross section
Column cross section
C
Column 1
D
Column 2
Figure 3 The middle frame

Transcribed Image Text:Consider that Column 1 will experience the vertical reaction force at the left end
of Beam 1. It will also receive concentrated loads from Beams 2 and 3, amounting
to a total of 118 kN. Determine the maximum compressive stress, the deflection
of the column and the buckling behaviour of Column 1. Note that Column 1 has
dimensions of 125 mm ×125 mm and a modulus of elasticity of 13 GPa, and is
fixed at the bottom. Please also note that the self-weight of Column 1 is ignored.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images

Recommended textbooks for you


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning