Design a 7.5-V zener regulator circuit using a 7.5-V zener specified at 10 mA. The zener has an incremental resistance rz = 30 Ω and a knee current of 0.5 mA. The regulator operates from a 10-V supply and delivers a nominal current of 5 mA to the load. What is the value of R you have chosen? What is the regulator output voltage when the supply is 10% high? Is 10% low? What is the output voltage when both the supply is 10% high and the load is removed? What is the largest load current that can be delivered while the zener operates at a current no lower than the knee current while the supply is 10% low? What is the load voltage in this case?

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

Design a 7.5-V zener regulator circuit using a 7.5-V zener specified at 10 mA. The zener has an incremental resistance rz = 30 Ω and a knee current of 0.5 mA. The regulator operates from a 10-V supply and delivers a nominal current of 5 mA to the load. What is the value of R you have chosen? What is the regulator output voltage when the supply is 10% high? Is 10% low? What is the output voltage when both the supply is 10% high and the load is removed? What is the largest load current that can be delivered while the zener operates at a current no lower than the knee current while the supply is 10% low? What is the load voltage in this case?

Expert Solution
Step 1

Draw the circuit diagram for Zener regula 10 V 7.5 V 7.5 V The analytical description for the Zenervol tage Vz is, Here, ½o i

Replace the Zener diode with the equivalent model and draw the equivalent circuit. 0 V 20 0 :30 Ω Consider the analytical des

 

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Knowledge Booster
Pressure sensors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,