Describe all solutions of Ax = 0 in parametric vector form, where A is row equivalent to the given matrix. 1 041 3 -9 001 00-3 000 01 5 000 00 0 01

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
To describe all solutions of \( Ax = 0 \) in parametric vector form, we begin with the matrix row equivalent to \( A \):

\[
\begin{bmatrix}
1 & 0 & 4 & -1 & 3 & -9 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

### Steps to Solve:

1. **Identify Pivot Columns:**
   - Columns 1, 3, and 5 are pivot columns.

2. **Identify Free Variables:**
   - The free variables correspond to the non-pivot columns: \( x_2 \), \( x_4 \), and \( x_6 \).

3. **Parametric Form:**
   - Express every variable in terms of the free variables:
     - From row 1: \( x_1 = -4x_3 + x_4 - 3x_5 + 9x_6 \)
     - From row 2: \( x_3 = 3x_6 \)
     - From row 3: \( x_5 = -5x_6 \)

4. **Parametric Vector:**
   - Substituting back, express the solution in vector form:

\[
\begin{align*}
x &= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \\
  &= \begin{bmatrix} -4x_3 + x_4 - 3x_5 + 9x_6 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \\
  &= x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} 9 \\ 0 \\ 3 \\ 0 \\ -5 \\ 1
Transcribed Image Text:To describe all solutions of \( Ax = 0 \) in parametric vector form, we begin with the matrix row equivalent to \( A \): \[ \begin{bmatrix} 1 & 0 & 4 & -1 & 3 & -9 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \] ### Steps to Solve: 1. **Identify Pivot Columns:** - Columns 1, 3, and 5 are pivot columns. 2. **Identify Free Variables:** - The free variables correspond to the non-pivot columns: \( x_2 \), \( x_4 \), and \( x_6 \). 3. **Parametric Form:** - Express every variable in terms of the free variables: - From row 1: \( x_1 = -4x_3 + x_4 - 3x_5 + 9x_6 \) - From row 2: \( x_3 = 3x_6 \) - From row 3: \( x_5 = -5x_6 \) 4. **Parametric Vector:** - Substituting back, express the solution in vector form: \[ \begin{align*} x &= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \\ &= \begin{bmatrix} -4x_3 + x_4 - 3x_5 + 9x_6 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \\ &= x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} 9 \\ 0 \\ 3 \\ 0 \\ -5 \\ 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,