Derive the steady state voltage equations for a compensated metadyne generator shown in Fig.1 A 2kW, 200V, 1500rpm, 2-pole fully compensated metadyne generator has the following parameters: Field self inductance and resistance 30Η, 200Ω Armature self inductance and resistance 0.06Η, 1 Ω Field armature mutual inductance 1.2H Calculate for steady state operation, the field current and power gain at rated output. 19-axis บ Fig. 1 F daxis

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter6: Power Flows
Section: Chapter Questions
Problem 6.45P
Question
Derive the steady state voltage equations for a compensated metadyne
generator shown in Fig.1
A 2kW, 200V, 1500rpm, 2-pole fully compensated metadyne generator has the
following parameters:
Field self inductance and resistance
30Η, 200Ω
Armature self inductance and resistance
0.06Η, 1 Ω
Field armature mutual inductance
1.2H
Calculate for steady state operation, the field current and power gain at rated
output.
19-axis
บ
Fig. 1
F
daxis
Transcribed Image Text:Derive the steady state voltage equations for a compensated metadyne generator shown in Fig.1 A 2kW, 200V, 1500rpm, 2-pole fully compensated metadyne generator has the following parameters: Field self inductance and resistance 30Η, 200Ω Armature self inductance and resistance 0.06Η, 1 Ω Field armature mutual inductance 1.2H Calculate for steady state operation, the field current and power gain at rated output. 19-axis บ Fig. 1 F daxis
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning