Define an engineering problem (an example of your own) in terms of a joint probability mass function of discrete variables X and Y. (Define an at least 6x6 table.) Find the marginal probability mass functions and conditional probability mass functions of both X and Y for your own example. Plot the joint probability mass function, marginal probability mass functions and conditional probability mass functions, separately.
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Define an engineering problem (an example of your own) in terms of a joint
Find the marginal probability mass
Plot the joint probability mass function, marginal probability mass functions and conditional probability mass functions, separately.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images