Decompose a = (4, -1,0) into parts parallel and perpendicular to b = (0, 1, 1). What is the projection of a onto b?

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Vector Decomposition and Projection**

Decompose **a** = ⟨4, -1, 0⟩ into parts parallel and perpendicular to **b** = ⟨0, 1, 1⟩. What is the projection of **a** onto **b**?

When decomposing a vector **a** into components parallel and perpendicular to another vector **b**, the following steps are taken:

1. **Projection of **a** onto **b****:
   - The projection of **a** onto **b** is given by the formula:

     \[
     \text{proj}_{\mathbf{b}} \mathbf{a} = \left( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \right) \mathbf{b}
     \]

2. **Calculation of the Projection**:
   - Compute the dot product: **a** ⋅ **b** = 4(0) + (-1)(1) + 0(1) = -1
   - Compute **b** ⋅ **b** = (0)^2 + (1)^2 + (1)^2 = 2
   - Thus, the projection of **a** onto **b**:
     \[
     \text{proj}_{\mathbf{b}} \mathbf{a} = \left( \frac{-1}{2} \right) \mathbf{b} = \left( \frac{-1}{2} \right) \langle0, 1, 1\rangle = \langle 0, -\frac{1}{2}, -\frac{1}{2} \rangle
     \]

3. **Component of **a** Perpendicular to **b****:
   - The perpendicular component is found using the equation:
     \[
     \mathbf{a}_{\perp} = \mathbf{a} - \text{proj}_{\mathbf{b}} \mathbf{a}
     \]
   - Calculate:
     \[
     \mathbf{a}_{\perp} = \langle 4, -1, 0 \rangle - \langle 0, -\frac{1}{2}, -\frac{1}{2} \rangle = \langle 4, -\frac{1
Transcribed Image Text:**Vector Decomposition and Projection** Decompose **a** = ⟨4, -1, 0⟩ into parts parallel and perpendicular to **b** = ⟨0, 1, 1⟩. What is the projection of **a** onto **b**? When decomposing a vector **a** into components parallel and perpendicular to another vector **b**, the following steps are taken: 1. **Projection of **a** onto **b****: - The projection of **a** onto **b** is given by the formula: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \left( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \right) \mathbf{b} \] 2. **Calculation of the Projection**: - Compute the dot product: **a** ⋅ **b** = 4(0) + (-1)(1) + 0(1) = -1 - Compute **b** ⋅ **b** = (0)^2 + (1)^2 + (1)^2 = 2 - Thus, the projection of **a** onto **b**: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \left( \frac{-1}{2} \right) \mathbf{b} = \left( \frac{-1}{2} \right) \langle0, 1, 1\rangle = \langle 0, -\frac{1}{2}, -\frac{1}{2} \rangle \] 3. **Component of **a** Perpendicular to **b****: - The perpendicular component is found using the equation: \[ \mathbf{a}_{\perp} = \mathbf{a} - \text{proj}_{\mathbf{b}} \mathbf{a} \] - Calculate: \[ \mathbf{a}_{\perp} = \langle 4, -1, 0 \rangle - \langle 0, -\frac{1}{2}, -\frac{1}{2} \rangle = \langle 4, -\frac{1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning