Day 10 HW Putting it all together We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where they exist). It is a fact that if f and g are invertible functions, and if the composition fog is defined, then fog is also invertible, and its inverse is (fog)-1=f¹og¹. For example: f(x)=x+2 has inverse f(x)=x-2, and g(x)=x has inverse g(x)=√√x, so (fog)(x)=3+2 has inverse (fog)(x)=g¹oƒ˜¹=√√x−2. (You should check that this works!) The fact that the inverses get composed in the opposite order is often explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must first take off your shoes before you can take off your socks. For each of the following functions, decompose it has a composition of two functions, and use this to compute its inverse. 1. f(x)=√x-1 2. f(x) = (2x+3)² Day 10 HW Putting it all together We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where they exist). It is a fact that if ƒ and g are invertible functions, and if the composition f@g is defined, then f@g is also invertible, and its inverse is (f@g) - 1 = f¹¹@g¹. For example: f(x) = x + 2 has inverse f¹(x) = x-2, and 3 3 9(x) = x³ has inverse g(x) = ³√x, so (f@g)(x) = x³ + 2 has inverse (f@g)(x) = g¨¹@ƒ¨¹ = == = ³√x - 2. (You should check that this works!) The fact that the inverses get composed in the opposite order is often explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must first take off your shoes before you can take off your socks. For each of the following functions, decompose it has a composition of two functions, and use this to compute its inverse. f(x)=x-1 = √x-1 f(x) = (2x+3)² f(x) = In(x^2) f(x) = x^7-4 f(x) = 2x^x+1
Day 10 HW Putting it all together We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where they exist). It is a fact that if f and g are invertible functions, and if the composition fog is defined, then fog is also invertible, and its inverse is (fog)-1=f¹og¹. For example: f(x)=x+2 has inverse f(x)=x-2, and g(x)=x has inverse g(x)=√√x, so (fog)(x)=3+2 has inverse (fog)(x)=g¹oƒ˜¹=√√x−2. (You should check that this works!) The fact that the inverses get composed in the opposite order is often explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must first take off your shoes before you can take off your socks. For each of the following functions, decompose it has a composition of two functions, and use this to compute its inverse. 1. f(x)=√x-1 2. f(x) = (2x+3)² Day 10 HW Putting it all together We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where they exist). It is a fact that if ƒ and g are invertible functions, and if the composition f@g is defined, then f@g is also invertible, and its inverse is (f@g) - 1 = f¹¹@g¹. For example: f(x) = x + 2 has inverse f¹(x) = x-2, and 3 3 9(x) = x³ has inverse g(x) = ³√x, so (f@g)(x) = x³ + 2 has inverse (f@g)(x) = g¨¹@ƒ¨¹ = == = ³√x - 2. (You should check that this works!) The fact that the inverses get composed in the opposite order is often explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must first take off your shoes before you can take off your socks. For each of the following functions, decompose it has a composition of two functions, and use this to compute its inverse. f(x)=x-1 = √x-1 f(x) = (2x+3)² f(x) = In(x^2) f(x) = x^7-4 f(x) = 2x^x+1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
not use ai please
![Day 10 HW
Putting it all together
We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where
they exist).
It is a fact that if f and g are invertible functions, and if the composition fog is defined, then fog is also
invertible, and its inverse is (fog)-1=f¹og¹. For example:
f(x)=x+2 has inverse f(x)=x-2, and
g(x)=x has inverse g(x)=√√x, so
(fog)(x)=3+2 has inverse (fog)(x)=g¹oƒ˜¹=√√x−2.
(You should check that this works!) The fact that the inverses get composed in the opposite order is often
explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must
first take off your shoes before you can take off your socks.
For each of the following functions, decompose it has a composition of two functions, and use this to
compute its inverse.
1. f(x)=√x-1
2. f(x) = (2x+3)²](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F38efd385-7f09-4a89-9ed2-7e8d3c3cf2cc%2F1090ba90-3998-41f7-a75f-27cdf65cde45%2F17j9fb_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Day 10 HW
Putting it all together
We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where
they exist).
It is a fact that if f and g are invertible functions, and if the composition fog is defined, then fog is also
invertible, and its inverse is (fog)-1=f¹og¹. For example:
f(x)=x+2 has inverse f(x)=x-2, and
g(x)=x has inverse g(x)=√√x, so
(fog)(x)=3+2 has inverse (fog)(x)=g¹oƒ˜¹=√√x−2.
(You should check that this works!) The fact that the inverses get composed in the opposite order is often
explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must
first take off your shoes before you can take off your socks.
For each of the following functions, decompose it has a composition of two functions, and use this to
compute its inverse.
1. f(x)=√x-1
2. f(x) = (2x+3)²
![Day 10 HW
Putting it all together
We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where
they exist).
It is a fact that if ƒ and g are invertible functions, and if the composition f@g is defined, then f@g is also
invertible, and its inverse is (f@g) - 1 = f¹¹@g¹. For example:
f(x) = x + 2 has inverse f¹(x) = x-2, and
3
3
9(x) = x³ has inverse g(x) = ³√x, so
(f@g)(x) = x³ + 2 has inverse (f@g)(x) = g¨¹@ƒ¨¹ =
==
= ³√x - 2.
(You should check that this works!) The fact that the inverses get composed in the opposite order is often
explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must
first take off your shoes before you can take off your socks.
For each of the following functions, decompose it has a composition of two functions, and use this to
compute its inverse.
f(x)=x-1
= √x-1
f(x) = (2x+3)²
f(x) = In(x^2)
f(x) = x^7-4
f(x) = 2x^x+1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F38efd385-7f09-4a89-9ed2-7e8d3c3cf2cc%2F1090ba90-3998-41f7-a75f-27cdf65cde45%2Frxbluv_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Day 10 HW
Putting it all together
We've now seen linear, exponential, and power functions. We've also seen their inverses (when and where
they exist).
It is a fact that if ƒ and g are invertible functions, and if the composition f@g is defined, then f@g is also
invertible, and its inverse is (f@g) - 1 = f¹¹@g¹. For example:
f(x) = x + 2 has inverse f¹(x) = x-2, and
3
3
9(x) = x³ has inverse g(x) = ³√x, so
(f@g)(x) = x³ + 2 has inverse (f@g)(x) = g¨¹@ƒ¨¹ =
==
= ³√x - 2.
(You should check that this works!) The fact that the inverses get composed in the opposite order is often
explain like this: In the morning, you first put on your socks, then you put on your shoes; at night, you must
first take off your shoes before you can take off your socks.
For each of the following functions, decompose it has a composition of two functions, and use this to
compute its inverse.
f(x)=x-1
= √x-1
f(x) = (2x+3)²
f(x) = In(x^2)
f(x) = x^7-4
f(x) = 2x^x+1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)