(d) Using your result from part (c), write the vector y = and a vector in W¹. 6 as the sum of a vector in W

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Last part only 

Solution of ist 3 parts is provided 

↑
D
(a) note
0₁.0₂
(b)
So fui, ū₂ ) TS
=
define
v₂ =
:.U₂
(Ⓒ)
Note
||
Step 3
11
TE
Now
20
Step 4
1
2
So
=
proj, (2₁) =
P=
and by Gram-Schindt Orthogonalization
process
that
proj (ei)
W
powo) (ez)
proj
11
=
=
Vq
ין
that
11
110q|||
(
=
=
NO
=
3
V.
-213
Proj (2₂) = = 1/3
O
W
213
-2/3
1/3
2/9
-4
<ej.u₁> U₁ + <e;• U₂> U₂
8/9
-2/9
2/9
0.
ฟง
219
none that {ei) i21,2,314
9
819
8/9
-219
219
0
4x2 + 2x0
+0x1
N/O
या
<V₂_U₁) U₁
2
0
213
- U₁
8
-2
-213
1/3
0
213
>
-213
(DOX
213
ban's of W.
t
0
-219
1/9
O
219
(4.2.0.4)
16+4+0+16
²/3, 0, 7 ) ²
2
-10
11
2
1
0
2
an orthonormal
4+0+1+4
213
O
13
+0
+
No-d
+
2
243
and
proj₁ (24) =
<BP ,,ea> Uit <U₂, e4$ Uz
-213
1/3
O
213
basis elements
2/9
0
U₂
2
+3)
g
1/9
219
O
• (U₂)
+4x2
=
(
0
219
219
2
2 8
²7-1
T
8/9
V₂
13
213
O
2/3
are sta
No-№
T
-213
43
213
0
43
213
Transcribed Image Text:↑ D (a) note 0₁.0₂ (b) So fui, ū₂ ) TS = define v₂ = :.U₂ (Ⓒ) Note || Step 3 11 TE Now 20 Step 4 1 2 So = proj, (2₁) = P= and by Gram-Schindt Orthogonalization process that proj (ei) W powo) (ez) proj 11 = = Vq ין that 11 110q||| ( = = NO = 3 V. -213 Proj (2₂) = = 1/3 O W 213 -2/3 1/3 2/9 -4 <ej.u₁> U₁ + <e;• U₂> U₂ 8/9 -2/9 2/9 0. ฟง 219 none that {ei) i21,2,314 9 819 8/9 -219 219 0 4x2 + 2x0 +0x1 N/O या <V₂_U₁) U₁ 2 0 213 - U₁ 8 -2 -213 1/3 0 213 > -213 (DOX 213 ban's of W. t 0 -219 1/9 O 219 (4.2.0.4) 16+4+0+16 ²/3, 0, 7 ) ² 2 -10 11 2 1 0 2 an orthonormal 4+0+1+4 213 O 13 +0 + No-d + 2 243 and proj₁ (24) = <BP ,,ea> Uit <U₂, e4$ Uz -213 1/3 O 213 basis elements 2/9 0 U₂ 2 +3) g 1/9 219 O • (U₂) +4x2 = ( 0 219 219 2 2 8 ²7-1 T 8/9 V₂ 13 213 O 2/3 are sta No-№ T -213 43 213 0 43 213
1. Let W = Span{V₁, V₂} with v₁ =
2
0
and 72 =
and a vector in W¹.
0
1
(a) Show that {7₁, 7₂} is an orthogonal basis for W.
(b) Construct an orthonormal basis {₁, ₂} for W.
(c) Construct the projection matrix P = UUT such that projw ý = Pỹ.
-6
8-
9
6
(d) Using your result from part (c), write the vector y =
as the sum of a vector in W
Transcribed Image Text:1. Let W = Span{V₁, V₂} with v₁ = 2 0 and 72 = and a vector in W¹. 0 1 (a) Show that {7₁, 7₂} is an orthogonal basis for W. (b) Construct an orthonormal basis {₁, ₂} for W. (c) Construct the projection matrix P = UUT such that projw ý = Pỹ. -6 8- 9 6 (d) Using your result from part (c), write the vector y = as the sum of a vector in W
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,