d Perform the following Operations on the | 14 = (-2₁-3₁-5), V = (4₁-2₁-1) to W² = (-404) R₁W = [ (u ² √²)ū² = ¯ (( W. WIR ) · U² = [ @²₁ √² + V².W = [

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Can anyone please help me to solve this problem ? I am stuck!
**Problem:**

Perform the following operations on the vectors:

\[
\vec{u} = \langle 2, -3, 5 \rangle, \quad \vec{v} = \langle 4, -2, -1 \rangle, \quad \vec{w} = \langle -4, 0, 4 \rangle
\]

1. \(\vec{u} \cdot \vec{w} = \_\_\_\_\)

2. \(((\vec{u} \cdot \vec{w}) \cdot \vec{u}) / \vec{u} = \_\_\_\_\)

3. \(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} = \_\_\_\_\)
Transcribed Image Text:**Problem:** Perform the following operations on the vectors: \[ \vec{u} = \langle 2, -3, 5 \rangle, \quad \vec{v} = \langle 4, -2, -1 \rangle, \quad \vec{w} = \langle -4, 0, 4 \rangle \] 1. \(\vec{u} \cdot \vec{w} = \_\_\_\_\) 2. \(((\vec{u} \cdot \vec{w}) \cdot \vec{u}) / \vec{u} = \_\_\_\_\) 3. \(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} = \_\_\_\_\)
### Problem

Perform the following operations on the vectors:

**\[ \vec{u} = \langle -2, 3, -5 \rangle \]**

**\[ \vec{v} = \langle 4, -2, 1 \rangle \]**

**\[ \vec{w} = \langle -4, 0, 4 \rangle \]**

1. **\[ \vec{u} \cdot \vec{w} = \]** 
   - Calculate the dot product of vectors \(\vec{u}\) and \(\vec{w}\).

2. **\[ (\vec{u} \cdot \vec{v}) \cdot \vec{u} = \]**
   - First, find the dot product of \(\vec{u}\) and \(\vec{v}\).
   - Then multiply the resulting scalar by vector \(\vec{u}\).

3. **\[ ((\vec{w} \cdot \vec{w}) \cdot \vec{u}) \cdot \vec{u} = \]**
   - Calculate the dot product of \(\vec{w}\) with itself.
   - Multiply the result by vector \(\vec{u}\).
   - Then find the dot product of the resulting vector with \(\vec{u}\).

4. **\[ \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} = \]**
   - Calculate the dot product of vectors \(\vec{u}\) and \(\vec{v}\).
   - Calculate the dot product of vectors \(\vec{v}\) and \(\vec{w}\).
   - Add the two results. 

Fill in the boxes with the answers obtained from the calculations.
Transcribed Image Text:### Problem Perform the following operations on the vectors: **\[ \vec{u} = \langle -2, 3, -5 \rangle \]** **\[ \vec{v} = \langle 4, -2, 1 \rangle \]** **\[ \vec{w} = \langle -4, 0, 4 \rangle \]** 1. **\[ \vec{u} \cdot \vec{w} = \]** - Calculate the dot product of vectors \(\vec{u}\) and \(\vec{w}\). 2. **\[ (\vec{u} \cdot \vec{v}) \cdot \vec{u} = \]** - First, find the dot product of \(\vec{u}\) and \(\vec{v}\). - Then multiply the resulting scalar by vector \(\vec{u}\). 3. **\[ ((\vec{w} \cdot \vec{w}) \cdot \vec{u}) \cdot \vec{u} = \]** - Calculate the dot product of \(\vec{w}\) with itself. - Multiply the result by vector \(\vec{u}\). - Then find the dot product of the resulting vector with \(\vec{u}\). 4. **\[ \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} = \]** - Calculate the dot product of vectors \(\vec{u}\) and \(\vec{v}\). - Calculate the dot product of vectors \(\vec{v}\) and \(\vec{w}\). - Add the two results. Fill in the boxes with the answers obtained from the calculations.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 6 steps with 7 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning